Advertisement

Efficiency enhancement in PbS/CdS quantum dot-sensitized solar cells by plasmonic Ag nanoparticles

  • M. A. K. L. DissanayakeEmail author
  • T. Jaseetharan
  • G. K. R. Senadeera
  • J. M. K. W. Kumari
Original Paper
  • 30 Downloads

Abstract

Semiconductor quantum dots (Q-dots) are attractive nanomaterials to be used in numerous research areas and device fabrication such as sensors, light-emitting diodes, transistors, and solar cells due to their unique optoelectronic properties. Quantum dot-sensitized solar cells (QDSSCs) have drawn considerable attention due to their cost-effectiveness and ability of multiple exciton generation and tunable energy gap of the quantum dots. In this study, plasmonic Ag colloidal nanoparticle-incorporated plasmonic TiO2 double-layer (nanofiber/nanoparticle) electrodes have been fabricated. These TiO2 electrodes were sensitized with PbS/CdS core-shell quantum dots by successive ionic layer adsorption and reaction (SILAR) technique, and QDSSCs were fabricated with polysulfide electrolyte. Cu2S was formed on brass plate and used as the counter electrode of the QDSSC. A higher power conversion efficiency of 4.09% has been obtained due to the plasmonic effect under the simulated light of 100 mW cm−2 with AM 1.5 spectral filter. The overall efficiency and short-circuit current density of the plasmonic QDSSC are enhanced by 15% and 23%, respectively, with respect to the QDSSC without Ag nanoparticles. The enhanced performance of the plasmonic QDSSC is evidently due to the enhanced optical absorption by localized surface plasmon resonance effect by the Ag nanoparticles in the TiO2 photoanode and the resulting increase in the short-circuit photocurrent.

Graphical abstract

Keywords

Quantum dots Ag nanoparticles Surface plasmon resonance Multiple exciton generation Energy gap 

Notes

Funding information

This study is financially supported by the National Science Foundation of Sri Lanka under grant number NSF/SCH/2018/04.

References

  1. 1.
    Tang J, Sargent EH (2011) Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Adv Mater 23(1):12–29CrossRefGoogle Scholar
  2. 2.
    Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110(11):6873–6890CrossRefGoogle Scholar
  3. 3.
    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photo response through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130(12):4007–4015CrossRefGoogle Scholar
  4. 4.
    Lang Lee Y, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609CrossRefGoogle Scholar
  5. 5.
    Shalom M, Dor S, Grinis L, Zaban A (2009) Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J Phys Chem C 113:3895–3898CrossRefGoogle Scholar
  6. 6.
    Zhao N, Osedach TP, Chang LY, Geyer SM, Wanger D, Binda MT, Arango AC, Bawendi MG, Bulovic V (2010) Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 4(7):3743–3752CrossRefGoogle Scholar
  7. 7.
    Bang JH, Kamat PV (2009) Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3(6):1467–1476CrossRefGoogle Scholar
  8. 8.
    Raj CJ, Karthick SN, Park S, Hemalatha KV, Kim S-K, Prabakar K, Kim H-J (2014) Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J Power Sources 248:439–446CrossRefGoogle Scholar
  9. 9.
    Chang C-H, Lee Y-H (2007) Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. J App Phys Lett 91:053503CrossRefGoogle Scholar
  10. 10.
    Pathan HM, Sankapal BR, Desai JD, Lokhande CD (2002) Preparation and characterization of nanocrystalline CdSe thin films deposited by SILAR method. Mater Chem Phys 78:11–14CrossRefGoogle Scholar
  11. 11.
    Sun W-T, Yu Y, Pan X-Y, Gao X-F, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130(4):1124–1125CrossRefGoogle Scholar
  12. 12.
    Sudhagar P, Jung JH, Park S, Lee YG, Sathyamoorthy R, Kang YS, Ahn H (2000) The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells. Electrochem Commun 11:2220–2224CrossRefGoogle Scholar
  13. 13.
    Jean J, Chang S, Brown PR, Cheng JJ, Rekemeyer PH, Bawendi MG, Gradecak S, Bulović V (2013) ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv Mater 25(20):2790–2796CrossRefGoogle Scholar
  14. 14.
    Dissanayake MAKL, Jaseetharan T, Senadeera GKR, Thotawatthage CA (2018) A novel, PbS:Hg quantum dot-sensitized, highly efficient solar cell structure with triple layered TiO2 photoanode. Electrochim Acta 269:172–179CrossRefGoogle Scholar
  15. 15.
    Wu J, Mangham SC, Reddy VR, Manasreh MO, Weaver BD (2012) Surface plasmon enhanced intermediate band-based quantum dots solar cell. Sol Energy Mater Sol Cells 102:44–49CrossRefGoogle Scholar
  16. 16.
    Dao V-D, Choi H-S (2016) Highly-efficient plasmon-enhanced dye-sensitized solar cells created by means of dry plasma reduction. Nanomatterials 6:70CrossRefGoogle Scholar
  17. 17.
    Notariann M, Vernon K, Chou A, Aljada M, Liu J, Motta N (2014) Plasmonic effect of gold nanoparticles in organic solar cells. Sol Energy 106:23–37CrossRefGoogle Scholar
  18. 18.
    Li X, Choy WCH, Lu H, Sha WEI, Ho AHP (2013) Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv Funct Mater 23:2728–2735CrossRefGoogle Scholar
  19. 19.
    Kawawaki T, Wang H, Kubo T, Saito K, Nakazaki J, Segawa H, Tatsuma T (2015) Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano 9:4165–4172CrossRefGoogle Scholar
  20. 20.
    Kawawaki T, Tatsuma T (2013) Enhancement of PbS quantum dot-sensitized photocurrents using plasmonic gold nanoparticles. Phys Chem Chem Phys 15(46):20247–20251CrossRefGoogle Scholar
  21. 21.
    Dadosh T (2009) Synthesis of uniform silver nanoparticles with a controllable size. Mater Lett 63:2236–2238CrossRefGoogle Scholar
  22. 22.
    Brennan TP, Ardalan P, Lee H-B-R, Bakke JR, Ding IK, McGehee MD, Bent SF (2011) Atomic layer deposition of CdS quantum dots for solid-state quantum dot sensitized solar cells. Adv Energy Mater 1:1169–1175CrossRefGoogle Scholar
  23. 23.
    Dissanayake MAKL, Divarathna HKDWMN, Dissanayake CB, Senadeera GKR, Ekanayake PMPC, Thotawattage CA (2016) An innovative TiO2 nanoparticle/nanofibre/nanoparticle, three-layer composite photoanode for efficiency enhancement in dye-sensitized solar cells. J Photochem Photobiol A Chem 322:110–118CrossRefGoogle Scholar
  24. 24.
    Dissanayake MAKL, Sarangika HNM, Senadeera GKR, Divarathna HKDWMNR, Ekanayake EMPC (2017) Application of a nanostructured, tri-layer TiO2 photoanode for efficiency enhancement in quasi-solid electrolyte-based dye-sensitized solar cells. J Appl Electrochem 47:1239–1249CrossRefGoogle Scholar
  25. 25.
    Bhand GR, Chaure NB (2017) Synthesis of CdTe, CdSe and CdTe/CdSe core/shell QDs from wet chemical colloidal method. J Mater Sci Semicond Process 68:279–287CrossRefGoogle Scholar
  26. 26.
    Huang K-Y, Luo Y-H, Cheng H-M, Tang J, Huang JH (2019) Performance enhancement of CdS/CdSe quantum dot-sensitized solar cells with (001)-oriented anatase TiO2 nanosheets photoanode. Nanoscale Res Lett 14:18CrossRefGoogle Scholar
  27. 27.
    González-Pedro V, Sima C, Marzari G, Boix PP, Giménez S, Shen Q, Dittrich T, Mora-Seró I (2013) High performing PbS quantum dot sensitized solar cells exceeding 4% efficiency: the role of metal precursor in the electron injection and charge separation. J Phys Chem Chem Phys 15:13835–13843CrossRefGoogle Scholar
  28. 28.
    Thulasi-Varma CV, Srinivasa Rao S, Ikkurthi KD, Kim S-K, Kang T-S, Kim H-J (2015) Enhanced photovoltaic performance and morphological control of the PbS counter electrode grown on functionalized self-assembled nanocrystals for quantum-dot sensitized solar cells via cost-effective chemical bath deposition. J Mater Chem C 3:10195–10206CrossRefGoogle Scholar
  29. 29.
    Dissanayake MAKL, Kumari JMKW, Senadeera GKR, Thotawatthage CA (2015) Efficiency enhancement in plasmonic dye-sensitized solar cells with TiO2 photoanodes incorporating gold and silver nanoparticles. J Appl Electrochem 46:47–58CrossRefGoogle Scholar
  30. 30.
    Ye W, Long R, Huang H, Xiong Y (2017) Plasmonic nanostructures in solar energy conversion. J Mater Chem C 5:1008–1021CrossRefGoogle Scholar
  31. 31.
    Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486CrossRefGoogle Scholar
  32. 32.
    Smith JG, Faucheaux JA, Jain PK (2015) Plasmon resonances for solar energy harvesting: A mechanistic outlook. Nano Today 10:67–80CrossRefGoogle Scholar
  33. 33.
    Wang Q, Moser JE, Gratzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953CrossRefGoogle Scholar
  34. 34.
    Mingsukang MA, Buraidah MH, Careem MA (2017) Development of gel polymer electrolytes for application in quantum dot-sensitized solar cells. Ionics 23:347–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Fundamental StudiesKandySri Lanka
  2. 2.Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  3. 3.Department of Physical SciencesSouth Eastern University of Sri LankaSammanthuraiSri Lanka
  4. 4.Department of PhysicsThe Open University of Sri LankaNugegodaSri Lanka

Personalised recommendations