Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 11, pp 3197–3207 | Cite as

Synthesis of MgCo2O4-coated Li4Ti5O12 composite anodes using co-precipitation method for lithium-ion batteries

  • Siyong Gu
  • Chien-Te HsiehEmail author
  • Mohammad Mahmudul Huq
  • Jo-Pei Hsu
  • Jianlin Li
Original Paper
  • 39 Downloads

Abstract

In the present work, we report synthesis of MgCo2O4 (MCO)/Li4Ti5O12 (LTO) composites for Li-ion battery anodes by a co-precipitation method. The objective of this work is to replace expensive Co with Mg and also to exploit advantages of both MCO and LTO. Three samples of MCO/LTO particles with different MCO proportion have various average particle sizes of 38.1, 56.9, and 58.5 nm, confirmed by scanning electron microscopy. Electrochemical studies show that a MCO/LTO anode offers a discharge capacity of ca. 300 mAh g−1, which is two times higher than that achieved by pristine LTO. The MCO/LTO anode also retains 75% of its initial capacity, even if the discharge rate is increased to 5 C. Cyclic stability test reveals that the composite anode still maintains nearly 85.5% of its initial capacity after 150 cycles. Electrochemical impedance spectroscopy indicates that the equivalent series resistance of MCO/LTO electrodes is significantly lower than that of LTO, i.e., from 35.5 to 9.9 Ω. The enhanced performance of the composite electrodes can be attributed to its improved conductivity as well as to the surface modification of LTO particles by MCO nanoparticle deposition which leads to increased number of active sites on the former.

Keywords

Lithium-ion battery Spinel structure Composite anodes Magnesium cobaltite Lithium titanate 

Notes

Funding information

This study was financially supported by the Ministry of Science and Technology, Taiwan.

References

  1. 1.
    Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–423CrossRefGoogle Scholar
  2. 2.
    Lou F, Zhou H, Tran TD, Melandsø Buan ME, Vullum-Bruer F, Rønning M, Walmsley JC, Chen D (2014) Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries. ChemSusChem 7:1335–1346CrossRefGoogle Scholar
  3. 3.
    Zhao X, Cao M, Hu C (2012) Binder strategy towards improving the rate performance of nanosheet-assembled SnO2 hollow microspheres. RSC Adv 2:11737–11742CrossRefGoogle Scholar
  4. 4.
    Cherian CT, Sundaramurthy J, Reddy MV, Suresh Kumar P, Mani K, Pliszka D, Sow CH, Ramakrishna S, Chowdari BV (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces 5(20):9957–9963CrossRefGoogle Scholar
  5. 5.
    Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763CrossRefGoogle Scholar
  6. 6.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRefGoogle Scholar
  7. 7.
    Tang Y, Yang L, Qiu Z, Huang J (2009) Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries. J Mater Chem 19:5980–5984CrossRefGoogle Scholar
  8. 8.
    Gao J, Jiang C, Ying J, Wan C (2006) Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries. J Power Sources 155:364–367CrossRefGoogle Scholar
  9. 9.
    Vikram Babu B, Vijaya Babu K, Tewodros Aregai G, Seeta Devi L, Madhavi Latha B, Sushma Reddi M, Samatha K, Veeraiah V (2018) Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries. Results Phys 9:284–289CrossRefGoogle Scholar
  10. 10.
    Hong JE, Oh RG, Ryu KS (2015) Li4Ti5O12/Co3O4 composite for improved performance in lithium-ion batteries. J Electrochem Soc 162:A1978–A1983CrossRefGoogle Scholar
  11. 11.
    He YB, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Yang QH, Kim JK (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2:913CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Guerfi A, Sevigny S, Lagace M, Hovington P, Kinoshita K, Zaghib K (2003) Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J Power Sources 119:88–94CrossRefGoogle Scholar
  13. 13.
    Chen Z, Belharouak I, Sun YK, Amine K (2013) Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater 23:959–969CrossRefGoogle Scholar
  14. 14.
    Jiang S, Zhao B, Chen Y, Cai R, Shao Z (2013) Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect. J Power Sources 238:356–365CrossRefGoogle Scholar
  15. 15.
    Yang KM, Hong YJ, Choi SH, Park BK, Kang YC (2013) Electrochemical properties of Li4Ti5O12-SnO2 composite powders prepared by scalable spray drying process. Int J Electrochem Sci 8:1026–1040Google Scholar
  16. 16.
    Zhou T, Lin Y, Zhao G, Huang Y, Lai H, Li J, Huang Z, Wu SH (2013) The enhancement role of ZnO surface modification on electrochemical performance of Li4Ti5O12/ZnO composites. Int J Electrochem Sci 8:1316–1327Google Scholar
  17. 17.
    Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180CrossRefGoogle Scholar
  18. 18.
    Wang Z, Zhou L (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911CrossRefGoogle Scholar
  19. 19.
    Prosini PP, Carewska M, Loreti S, Minarini C, Passerini S (2000) Lithium iron oxide as alternative anode for li-ion batteries. Int J Inorg Mater 2:365–370CrossRefGoogle Scholar
  20. 20.
    Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRefGoogle Scholar
  21. 21.
    Opra DP, Gnedenkov SV, Sokolov AA, Zheleznov VV, Voit EI, Sushkov YV, Sinebryukhov SL (2015) Enhancing the reversible capacity of nanostructured TiO2 (anatase) by Zr-doping using a sol-gel template method. Scr Mater 107:136–139CrossRefGoogle Scholar
  22. 22.
    Gnedenkov SV, Opra DP, Kuryavyi VG, Sinebryukhov SL, Ustinov AY, Sergienko VI (2015) Nanostructured TiO2-TiOF2 composite synthesized by the original method of pulsed high-voltage discharge as anode material for Li-ion battery. Nanotechnol Russ 10(5-6):353–356CrossRefGoogle Scholar
  23. 23.
    Gnedenkov SV, Sinebryukhov SL, Zheleznov VV, Opra DP, Voit EI, Modin EB, Sokolov AA, Yu Ustinov A, Sergienko VI (2018) Effect of Hf-doping on electrochemical performance of anatase TiO2 as an anode material for lithium storage. R Soc Open Sci 5(6):171811CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Binotto G, Larcher D, Prakash AS, Herrera Urbina R, Hegde MS, Tarascon JM (2007) Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem Mater 19:3032–3040CrossRefGoogle Scholar
  25. 25.
    Yan N, Hu L, Li Y, Wang Y, Zhong H, Hu X, Kong X, Chen Q (2012) Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C 116:7227–7235CrossRefGoogle Scholar
  26. 26.
    Sharma Y, Sharma N, Subba Rao GV, Chowdari BV (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861CrossRefGoogle Scholar
  27. 27.
    Mondal AK, Su D, Chen S, Xie X, Wang G (2014) Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl Mater Interfaces 6(17):14827–14835CrossRefGoogle Scholar
  28. 28.
    Wang X, Zhai G, Wang H (2015) Facile synthesis of MgCo2O4 nanowires as binder-free flexible anode materials for high-performance Li-ion batteries. J Nanopart Res 17:339CrossRefGoogle Scholar
  29. 29.
    Sharma Y, Sharma N, Rao GS, Chowdari BV (2007) Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J Power Sources 173:495–501CrossRefGoogle Scholar
  30. 30.
    Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921CrossRefGoogle Scholar
  31. 31.
    Sharma Y, Sharma N, Rao GS, Chowdari BV (2008) Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 179:587–597CrossRefGoogle Scholar
  32. 32.
    Li J, Wang J, Liang X, Zhang Z, Liu H, Qian Y, Xiong S (2013) Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. ACS Appl Mater Interfaces 6:24–30CrossRefGoogle Scholar
  33. 33.
    Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637CrossRefGoogle Scholar
  34. 34.
    Okamoto S, Ichitsubo T, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Shimokawa K, Goto N, Doi T, Matsubara E (2015) Intercalation and push-out process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv Sci 2:1500072CrossRefGoogle Scholar
  35. 35.
    Gu S, Hsieh CT, Huq MM, Hsu JP, Ashraf Gandomi Y, Li J (2019) Preparation of MgCo2O4/graphite composites as cathode materials for magnesium-ion batteries. J Solid State Electrochem 7:1–9CrossRefGoogle Scholar
  36. 36.
    Guan X, Wang Q, Luo P, Yu Y, Li X, Zhang Y, Chen D (2018) Morphology-tuned synthesis of MgCo2O4 arrays on graphene coated nickel foam for high-rate supercapacitor electrode. Int J Electrochem Sci 13:2272–2285CrossRefGoogle Scholar
  37. 37.
    Kamioka N, Ichitsubo T, Uda T, Imashuku S, Taninouchi Y, Matsubara E (2008) Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity, Mater. Transactions 49:824–828Google Scholar
  38. 38.
    Qin M, Li Y, Lv XJ (2017) Preparation of Ce-and La-doped Li4Ti5O12 nanosheets and their electrochemical performance in Li half cell and Li4Ti5O12/LiFePO4 full cell batteries. Nanomaterials 7:150CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hsieh CT, Lin JY (2010) Influence of Li addition on charge/discharge behavior of spinel lithium titanate. J Alloys Compd 506:231–236CrossRefGoogle Scholar
  40. 40.
    Stelmachowski P, Maniak G, Kaczmarczyk J, Zasada F, Piskorz W, Kotarba A, Sojka Z (2014) Mg and Al substituted cobalt spinels as catalysts for low temperature deN2O-evidence for octahedral cobalt active sites. Appl Catal B Environ 146:105–111CrossRefGoogle Scholar
  41. 41.
    Pu ZY, Zhou H, Zheng YF, Huang WZ, Li XN (2017) Enhanced methane combustion over Co3O4 catalysts prepared by a facile precipitation method: effect of aging time. Appl Surf Sci 410:14–21CrossRefGoogle Scholar
  42. 42.
    Wang F, Liu Y, Zhao, Wang Y, Wang Z, Zhang W, Ren F (2018) Facile synthesis of two-dimensional porous MgCo2O4 nanosheets as anode for lithium-ion batteries. Appl Sci 8:22CrossRefGoogle Scholar
  43. 43.
    Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRefGoogle Scholar
  44. 44.
    Yuan T, Tan Z, Ma C, Yang J, Ma ZF, Zheng S (2017) Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv Energy Mater 7:1601625CrossRefGoogle Scholar
  45. 45.
    Zhao B, Ran R, Liu M, Shao Z (2015) A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater Sci Eng R 98:1–71CrossRefGoogle Scholar
  46. 46.
    Zhang H, Liu Y, Wang T, Yang Y, Shi S, Yang G (2016) Li2ZrO3-coated Li4Ti5O12 with nanoscale interface for high performance lithium-ion batteries. Appl Surf Sci 368:56–62CrossRefGoogle Scholar
  47. 47.
    Liang G, Pillai AS, Peterson VK, Ko KY, Chang CM, Lu CZ, Liu CE, Liao SC, Chen JM, Guo Z, Pang WK (2018) Effect of AlF3-coated Li4Ti5O12 on the performance and function of the LiNi0.5Mn1.5O4||Li4Ti5O12 full battery-an in-operando neutron powder diffraction study. Front Ener Res 6:1–12CrossRefGoogle Scholar
  48. 48.
    Li J, Huang S, Xu S, Lan L, Lu L, Li S (2017) Synthesis of spherical silver-coated Li4Ti5O12 anode material by a sol-gel-assisted hydrothermal method. Nanoscale Res Lett 12:576CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang Y, Ren Y, Dai X, Yan X, Huang B, Li J (2018) Electrochemical performance of ZnO-coated Li4Ti5O12 composite electrodes for lithium-ion batteries with the voltage ranging from 3 to 0.01 V. R Soc Open Sci 5:180762CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang L, Zhang Y, Scofield ME, Yue S, McBean C, Marschilok AC, Takeuchi KJ, Takeuchi ES, Wong SS (2015) Enhanced performance of “flower-like” Li4Ti5O12 motifs as anode materials for high-rate lithium-ion batteries. ChemSusChem 8(19):3304–3313CrossRefGoogle Scholar
  51. 51.
    Wei A, Li W, Zhang L, Liu Z (2017) Enhanced electrochemical performance of La2O3-modified Li4Ti5O12 anode material for Li-ion batteries. In IOP Conference Series: Materials Science and Engineering (231(1):012082). IOP PublishingGoogle Scholar
  52. 52.
    Zhang X, Xu W, Liu W, Li X, Zhong X, Lin Y (2018) TinO2n − 1-coated Li4Ti5O12 composite anode material for lithium-ion batteries. JOM 70(8):1383–1386CrossRefGoogle Scholar
  53. 53.
    Yang CR, Wang YY, Wan CC (1998) Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. J Power Sources 72:66–70CrossRefGoogle Scholar
  54. 54.
    Churikov AV, Ivanishchev AV, Ivanishcheva IA, Zapsis KV, Gamayunova IM, Sycheva VO (2008) Kinetics of electrochemical lithium intercalation into thin tungsten (VI) oxide layers. Russ J Electrochem 44(5):530–542CrossRefGoogle Scholar
  55. 55.
    Gao Z, Zhang X, Hua H, Guo D, Zhao H, Yu H (2017) Influencing factors of low- and high-temperature behavior of Co-doped Zn2SnO4-graphene-carbon nanocomposite as anode material for lithium-ion batteries. J Electroanal Chem 791:56–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and EngineeringXiamen University of TechnologyXiamenChina
  2. 2.Department of Chemical Engineering and Materials ScienceYuan Ze UniversityTaoyuanTaiwan
  3. 3.Department of Mechanical, Aerospace and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA
  4. 4.Department of Chemical and Biological EngineeringUniversity of SaskatchewanSaskatoonCanada
  5. 5.Energy and Transportation Science Division, Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations