Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 11, pp 3165–3171 | Cite as

High-temperature transport in perovskite-type Ca0.25Sr0.75Fe0.75Mo0.25O3 − δ

  • O. V. MerkulovEmail author
  • A. A. Markov
  • I. A. Leonidov
  • M. V. Patrakeev
Original Paper
  • 20 Downloads

Abstract

The comparative study of transport characteristics of SrFe0.75Mo0.25O3 − δ and Ca0.25Sr0.75Fe0.75Mo0.25O3 − δ was carried out in order to evaluate calcium substitution usability to improve functional properties of electrode materials based on SrFe1 − xMoxO3 − δ. The electrical conductivity in CaxSr1 − xFe0.75Mo0.25O3 − δ was measured as a function of oxygen partial pressure varying in the range of 10−21–0.5 atm at the temperature range of 750–950 °C. The thermogravimetric measurements have revealed that calcium substitution results in a decrease of oxygen content in SrFe0.75Mo0.25O3 − δ. The conductivity and oxygen content analysis has shown that calcium introduction in SrFe0.75Mo0.25O3 − δ provides about 30% conductivity increase under reducing conditions attributed to an increase in both concentration and mobility of n-type charge carriers. In contrast, hole conduction has been found unaffected by calcium content in CaxSr1 − xFe0.75Mo0.25O3 − δ. The improved electrical conductivity in Ca0.25Sr0.75Fe0.75Mo0.25O3 − δ under reducing conditions calls for testing this oxide as an anode material.

Keywords

Perovskite Mixed conductors Anode materials Electron mobility 

Notes

Acknowledgments

The authors are grateful to the Russian Science Foundation (project 17-79-30071) for the support of this work.

References

  1. 1.
    Martinez-Coronado R, Alonso JA, Aguadero A, Fernandez-Diaz MT (2012) Optimized energy conversion efficiency in solid-oxide fuel cells implementing SrMo1–xFexO3–δ perovskites as anodes. J Power Sources 208:153–158CrossRefGoogle Scholar
  2. 2.
    Xiao G, Liu Q, Dong X, Huang K, Chen F (2010) Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. J Power Sources 195:8071–8074CrossRefGoogle Scholar
  3. 3.
    Zhang L, Zhou Q, He Q, He T (2010) Double-perovskites A2FeMoO6−δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. J Power Sources 195:6356–6366CrossRefGoogle Scholar
  4. 4.
    Liu Q, Bugaris DE, Xiao G, Chmara M, Ma S, zur Loye H-C, Amiridis MD, Chen F (2011) Sr2Fe1.5Mo0.5O6−δ as a regenerative anode for solid oxide fuel cells. J Power Sources 196:9148–9153CrossRefGoogle Scholar
  5. 5.
    Han Z, Wang Y, Yang Y, Li L, Yang Z, Han M (2017) High-performance SOFCs with impregnated Sr2Fe1.5Mo0.5O6−δ anodes toward sulfur resistance. J Alloys Compd 703:258–263CrossRefGoogle Scholar
  6. 6.
    Ge X-M, Chan S-H, Liu Q-L, Sun Q (2012) Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Adv Energy Mater 12:1156–1181CrossRefGoogle Scholar
  7. 7.
    Wang Z, Tian Y, Li Y (2011) Direct CH4 fuel cell using Sr2FeMoO6 as an anode material. J Power Sources 196:6104–6109CrossRefGoogle Scholar
  8. 8.
    Gao J, Meng X, Luo T, Wu H, Zhan Z (2017) Symmetrical solid oxide fuel cells fabricated by phase inversion tape casting with impregnated SrFe0.75Mo0.25O3−δ (SFMO) electrodes. Int J Hydrog Energy 42:18499–18503CrossRefGoogle Scholar
  9. 9.
    Meng X, Liu X, Han D, Wu H, Li J, Zhan Z (2014) Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3−δ electrodes. J Power Sources 252:58–63CrossRefGoogle Scholar
  10. 10.
    Merkulov OV, Markov AA, Naumovich EN, Shalaeva EV, Leonidov IA, Patrakeev MV (2019) Non-uniform electron conduction in weakly ordered SrFe1−xMoxO3−δ. Dalton Trans 48(14):4530–4537CrossRefGoogle Scholar
  11. 11.
    Merkulov OV, Markov AA, Patrakeev MV, Leonidov IA, Shalaeva EV, Tyutyunnik AP, Kozhevnikov VL (2018) Structural features and high-temperature transport in SrFe0.7Mo0.3O3−δ. J Solid State Chem 258:447–452CrossRefGoogle Scholar
  12. 12.
    Chan TS, Liu RS, Guo GY, Hu SF, Lin JG, Chen JM, Attfield JP (2003) Chemical tuning of structure, magnetization, and conductivity in the self-doped double-perovskite (Sr2–xCax)FeMoO6 (0 ≤ x ≤ 2.0) system. Chem Mater 15:425–432CrossRefGoogle Scholar
  13. 13.
    Liu RS, Chan TS, Mylswamy S, Guo GY, Chen JM, Attfield JP (2008) Band overlap via chemical pressure control in double perovskite (Sr2–xCax)FeMoO6 (0 ≤ x ≤ 2.0) with TMR effect. Curr Appl Phys 8:110–113CrossRefGoogle Scholar
  14. 14.
    Qiao J, Chen W, Wang W, Wang Z, Sun W, Zhang J, Sun K (2016) The Ca element effect on the enhancement performance of Sr2Fe1.5Mo0.5O6–δ perovskite as cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 331:400–407CrossRefGoogle Scholar
  15. 15.
    Merkulov OV, Naumovich EN, Markov AA, Leonidov IA, Patrakeev MV (2019) Oxygen nonstoichiometry and defect chemistry of perovskite-type Ca0.25Sr0.75Fe0.75Mo0.25O3–δ. Mater Lett 236:719–722CrossRefGoogle Scholar
  16. 16.
    Osinkin DA, Beresnev SM, Khodimchuk AV, Korzun IV, Lobachevskaya NI, Suntsov AY (2019) Functional properties and electrochemical performance of Ca-doped Sr2–xCaxFe1.5Mo0.5O6–δ as anode for solid oxide fuel cells. J Solid State Electrochem 23:627–634CrossRefGoogle Scholar
  17. 17.
    Kraus W, Nolze G, PowderCell for Windows—version 2.4—structure visualisation/manipulation, powder pattern calculation and profile fitting, Federal Institute for Materials Research and Testing, Berlin, Germany, 2000.Google Scholar
  18. 18.
    Patrakeev MV, Bahteeva JA, Mitberg EB, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR (2003) Electron/hole and ion transport in La1–xSrxFeO3–δ. J Solid State Chem 172:219–231CrossRefGoogle Scholar
  19. 19.
    Shalaeva EV, Patrakeev MV, Markov AA, Tyutyunnik AP, Murzakaev AM, Kharton VV, Tsipis EV, Waerenborgh JC, Leonidov IA, Kozhevnikov VL (2015) Ion transport in dual-phase SrFe1−xТаxO3−δ (x=0.03−0.10): effects of redox cycling. J Solid State Electrochem 19:841–849CrossRefGoogle Scholar
  20. 20.
    Shannon RD (1976) Acta Crystallogr Sect A 32:751–767CrossRefGoogle Scholar
  21. 21.
    Merkulov OV, Naumovich EN, Patrakeev MV, Markov AA, Bouwmeester HJM, Leonidov IA, Kozhevnikov VL (2016) Oxygen nonstoichiometry and defect chemistry of perovskite-structured SrFe1–xMoxO3–δ solid solutions. Solid State Ionics 292:116–121CrossRefGoogle Scholar
  22. 22.
    Nemudry A, Rogachev A, Gainutdinov I, Schöllhorn R (2001) Reactivity of the perovskite system Ca1–xSrxFeO2.5 in topotactic electrochemical oxidation at ambient temperature. J Solid State Electrochem 5:450–458CrossRefGoogle Scholar
  23. 23.
    Mizusaki J, Sasamoto T, Cannon WR, Bowen K (1983) Electronic conductivity, Seebeck coefficient, and defect structure of La1–xSrxFeO3–δ (x=0.l, 0.25). J Am Ceram Soc 66:247–252CrossRefGoogle Scholar
  24. 24.
    Yoo J, Kim S, Choi H, Rhim Y, Lim J, Lee S, Jacobson AJ (2011) Measurement of electrical conductivity of La0.2Sr0.8Cr0.2Fe0.8O3–δ using gas-tight electrochemical cells. J Electroceram 26:56–62CrossRefGoogle Scholar
  25. 25.
    Grenier J-C, Pouchard M, Hagenmuller P (1981) Vacancy ordering in oxygen-deficient perovskite-related ferrites. Struct Bond 47:1–25CrossRefGoogle Scholar
  26. 26.
    Chesnokov KY, Markov AA, Patrakeev MV, Leonidov IA, Murzakaev AM, Leonidova ON, Shalaeva EV, Kharton VV, Kozhevnikov VL (2014) Structure and transport properties of La0.5Sr0.5–xCaxFeO3–δ. Solid State Ionics 262:672–677CrossRefGoogle Scholar
  27. 27.
    Park CY, Jacobson AJ (2005) Electrical conductivity and oxygen nonstoichiometry of La0.2Sr0.8Fe0.55Ti0.45O3–δ. J Electrochem Soc 152:J65–J73CrossRefGoogle Scholar
  28. 28.
    Markov AA, Patrakeev MV, Savinskaya OA, Nemudry AP, Leonidov IA, Leonidova ON, Kozhevnikov VL (2008) Oxygen nonstoichiometry and high-temperature transport in SrFe1–xWxO3–δ. Solid State Ionics 179:99–103CrossRefGoogle Scholar
  29. 29.
    Anikina PV, Markov AA, Patrakeev MV, Leonidov IA, Kozhevnikov VL (2009) High-temperature transport and stability of SrFe1–xNbxO3–δ. Solid State Sci 11:1156–1162CrossRefGoogle Scholar
  30. 30.
    Merkulov OV, Samigullin RR, Markov AA, Leonidov IA, Patrakeev MV (2016) Defect chemistry and high-temperature transport in SrFe1–xSnxO3–δ. J Solid State Chem 243:190–197CrossRefGoogle Scholar
  31. 31.
    Merkulov OV, Naumovich EN, Patrakeev MV, Markov AA, Shalaeva EV, Kharton VV, Tsipis EV, Waerenborgh JC, Leonidov IA, Kozhevnikov VL (2018) Defect formation, ordering, and transport in SrFe1–xSixO3–δ (x = 0.05–0.20). J Solid State Electrochem 22:727–737CrossRefGoogle Scholar
  32. 32.
    Bamburov AD, Markov AA, Patrakeev MV, Leonidov IA (2019) The impact of Ba substitution in lanthanum strontium ferrite on the mobility of charge carriers. Solid State Ionics 332:86–92CrossRefGoogle Scholar
  33. 33.
    Bosman IG, Daal HJ (1970) Small-polaron versus band conduction in some transition-metal oxides. Adv Phys 19:1–117CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Solid State ChemistryUB RASEkaterinburgRussia

Personalised recommendations