Characterization of ZnO-Cu2O crystal films by electrochemical codeposition

  • Leo Chau-Kuang LiauEmail author
  • Ping-Wei Kuo
Original Paper


Codeposition of mixed ZnO and Cu2O (ZnO-Cu2O) crystal films using electrochemical deposition (ECD) was investigated. The ZnO-Cu2O films were prepared using different ratios of Zn2+ and Cu2+ in precursor solutions and at various ECD periods and potential settings. The properties of the ECD films, such as crystal composition, morphology, and light absorption, were analyzed. Results showed that the properties of the fabricated films were affected by the potential setting, metal ion ratio, and deposition period in the ECD process. The potential required to fabricate ZnO film was lowered negatively from − 1 V without Cu2+ to − 0.4 V with the presence of Cu2+ in the ECD solution. The presence of Cu2+ was determined to be the major factor affecting the shape of ZnO particles formed, which varied from rod-like to spherical. The crystal composition of the ECD films involved Cu2O and Cu without ZnO using a low ratio of Zn2+ in the precursor at − 0.4 V. ZnO and Cu2O crystals appeared in the film at − 0.4 V with a high ratio of Zn2+ in the precursor. The composition of ZnO, Cu2O, and Cu in the ECD films was the major factor to influence the light absorption patterns of the films. The codeposition steps of ZnO-Cu2O films were elucidated from the results.


ZnO/Cu2O film Electrochemical deposition Light absorption Metal ion ratio Deposition period 


Funding information

This work is partially supported by the Ministry of Science and Technology, Taiwan, R.O.C. under Grant MOST 106-2221-E-155-047.


  1. 1.
    Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd 727:792–820CrossRefGoogle Scholar
  2. 2.
    Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81:536–551CrossRefGoogle Scholar
  3. 3.
    Jiang T, Xie T, Yang W, Chen L, Fan H, Wang D (2013) Photoelectrochemical and photovoltaic properties of p–n Cu2O homojunction films and their photocatalytic performance. J Phys Chem C 117:4619–4624CrossRefGoogle Scholar
  4. 4.
    Wang M, Kang M, Guo C, Fang S, He L, Jia C, Zhang G, Bai B, Zong W, Zhang Z (2015) Electrochemical biosensor based on Cu/Cu2O nanocrystals and reduced graphene oxide nanocomposite for sensitively detecting ractopamine. Electrochim Acta 182:668–677CrossRefGoogle Scholar
  5. 5.
    Baruah S, Maibam B, Kumar S (2017) Zinc oxide: a novel material for biosensors (a review). Imp J Interdiscip Res 3:3Google Scholar
  6. 6.
    Tynell T, Karppinen M (2014) Atomic layer deposition of ZnO: a review. Semicond Sci Tech 29:043001CrossRefGoogle Scholar
  7. 7.
    Perng DC, Hong MH, Chen KH, Chen KH (2017) Enhancement of short-circuit current density in Cu2O/ZnO heterojunction solar cells. J Alloys Compd 695:549–554CrossRefGoogle Scholar
  8. 8.
    Wick R, Tilley SD (2015) Photovoltaic and Photoelectrochemical solar energy conversion with Cu2O. J Phys Chem C 119:26243–26257CrossRefGoogle Scholar
  9. 9.
    Ruhle S, Anderson AY, Barad HN, Kupfer B, Bouhadana Y, Rosh-Hodesh E, Zaban A (2012) All-oxide photovoltaics. J Phys Chem Lett 3:3755–3764PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chen LC (2013) Review of preparation and optoelectromoc characteristics of Cu2O-based solar cells nanostructure. Mat Sci Semicond Process 16:1172–1185CrossRefGoogle Scholar
  11. 11.
    Li J, Li H, Xue Y, Fang H, Wang W (2014) Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing. Sens Actuator B-Chem 191:619–624CrossRefGoogle Scholar
  12. 12.
    Yousef Elahi M, Khodadadi AA, Mortazavia Y (2014) A glucose biosensor based on glucose oxidase immobilized on ZnO/Cu2O Graphene oxide nanocomposite electrode. J Electrochem Soc 161:81–87CrossRefGoogle Scholar
  13. 13.
    Jiang X, Lin Q, Zhang M, He G, Sun Z (2015) Microstructure, optical properties, and catalytic performance of Cu2O-modified ZnO nanorods prepared by electrodeposition. Nanoscale Res Lett 10:30PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jeong S, Song SH, Nagaich K, Campbell SA, Aydil ES (2011) An analysis of temperature dependent current-voltage characteristics of Cu2O-ZnO heterojunction solar cells. Thin Solid Films 519:6613–6619CrossRefGoogle Scholar
  15. 15.
    Hsueh T, Hsu C, Chang S, Guo P, Hsieh J, Chen I (2007) Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates. Scripta Mater 57:53–56CrossRefGoogle Scholar
  16. 16.
    Minami T, Miyata T, Ihara K, Minamino Y, Tsukada S (2006) Effect of ZnO film deposition on the photovoltaic properties of ZnO CuO heterojunction devices. Thin Solid Films 494:47–52CrossRefGoogle Scholar
  17. 17.
    Wong LM, Chiam SY, Huang JQ, Wang J, Pan JS, Chim WK (2010) Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells. J Appl Phys 108:033702CrossRefGoogle Scholar
  18. 18.
    Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R (2006) Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl Phys Lett 88:163502CrossRefGoogle Scholar
  19. 19.
    Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Paul GK, Sakurai T (2006) Thin film deposition of Cu2O and application for solar cells. Sol Energy 80:715–722CrossRefGoogle Scholar
  20. 20.
    Ievskaya Y, Hoye RLZ, Sadhanala A, Musselman KP, MacManus-Driscoll JL (2015) Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: improved interface quality and solar cell performance. Sol Energy Mater Sol Cells 135:43–48CrossRefGoogle Scholar
  21. 21.
    Jia W, Dong H, Zhao J, Dang S, Zhang Z, Li T, Liu X, Xu B (2012) p-Cu2O/n-ZnO heterojunction fabricated by hydrothermal method. Appl Phys A Mater Sci Process 109:751–756CrossRefGoogle Scholar
  22. 22.
    Nishi Y, Miyata T, Minami T (2013) The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells. Thin Solid Films 528:72–76CrossRefGoogle Scholar
  23. 23.
    Katayama J, Ito K, Matsuoka M, Tamaki J (2004) Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition. J Appl Electrochem 34:687–692CrossRefGoogle Scholar
  24. 24.
    Shinagawa T, Inaba M, Tasaka A (2007) Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J Phys D Appl Phys 40:3326–3329CrossRefGoogle Scholar
  25. 25.
    Jeong SS, Mittiga A, Salza E, Masci A, Passerini S (2008) Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochim Acta 53:2226–2231CrossRefGoogle Scholar
  26. 26.
    Cui J, Gibson UJ (2010) A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells. J Phys Chem C 114:6408–6412CrossRefGoogle Scholar
  27. 27.
    Hussain S, Cao C, Nabi G, Khan WS, Usman Z, Mahmood T (2011) Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu2O/n-ZnO solar cells. Electrochim Acta 56:8342–8346CrossRefGoogle Scholar
  28. 28.
    Wei H, Gong H, Wang Y, Hu X, Chen L, Xu H, Liub P, Cao B (2011) Three three-dimensional anionic metal–organic frameworks with (4,8)-connected alb topology constructed from a semi-rigid ligand and polynuclear metal clusters. Cryst Eng Comm 13:6065–6064CrossRefGoogle Scholar
  29. 29.
    Hsua Y, Lina H, Chena M, Chen Y, Linc Y (2014) Polarity-dependant performance of p-Cu2O/n-ZnO Heterojunction solar cells. Electrochim Acta 144:295–299CrossRefGoogle Scholar
  30. 30.
    Zhu C, Panzer MJ (2015) Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications. Appl Mater Interfaces 7:5624–5628CrossRefGoogle Scholar
  31. 31.
    Chen S, Lin L, Liu J, Lv P, Wu X, Zheng W, Qu Y, Lai F (2015) An electrochemical constructed p-Cu2O/n-ZnO heterojunction for solar cell. J Alloys Compd 644:378–382CrossRefGoogle Scholar
  32. 32.
    Lahmar H, Azizi A, Schmerber G, Diniac A (2016) Effect of the thickness of the ZnO buffer layer on the properties of electrodeposited p-Cu2O/n-ZnO/ n-AZO heterojunctions. RSC Adv 6:68663–68674CrossRefGoogle Scholar
  33. 33.
    Abd-Ellah M, Thomas JP, Zhang L, Leung KT (2016) Enhancement of solar cell performance of p-Cu2O/n-ZnO-nanotube and nanorod heterojunction devices. Sol Energy Mater Sol Cells 152:87–93CrossRefGoogle Scholar
  34. 34.
    Haller S, Jung J, Rousset J, Lincot D (2012) Effect of electrodeposition parameters and addition of chloride ions on the structural and optoelectronic properties of Cu2O. Electrochim Acta 82:402–407CrossRefGoogle Scholar
  35. 35.
    Skompska M, Zarebska K (2014) Electrodeposition of ZnO nanorod arrays on transparent conducting substrates–a review. Electrochim Acta 127:467–488CrossRefGoogle Scholar
  36. 36.
    Guo X, Lv W, Li XY (2014) Additive-free shape-invariant nano-to-micron size-tuning of Cu2O cubic crystals by square-wave voltammetry. J Phys Chem C 118:11062–11077CrossRefGoogle Scholar
  37. 37.
    Liau LCK, Tseng PC (2015) Effect of current pulse on electronic properties of Cu2O films fabricated by electrochemical deposition process. Electrochim Acta 182:781–788CrossRefGoogle Scholar
  38. 38.
    Yu X, Tang X, Li J, Zhang J, Kou S, Zhao J, Yao B (2017) Nucleation mechanism and optoelectronic properties of Cu2O onto ITO electrode in the electrochemical deposition process. J Electrochem Soc 164:999–1005CrossRefGoogle Scholar
  39. 39.
    Lee J, Tak Y (2000) Selective electrodeposition of ZnO onto Cu2O. Electrochem Commun 2:765–768CrossRefGoogle Scholar
  40. 40.
    Andal V, Buvaneswari G (2017) Effect of reducing agents in the conversion of Cu2O nanocolloid to cu nanocolloid. Eng Sci Technol Int J 20:340–344CrossRefGoogle Scholar
  41. 41.
    Rahal H, Kihal R, Affoune AM, Ghers M, Djazi F (2017) Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells. J Semicond 38(5):053002CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceYuan Ze UniversityTaoyuanTaiwan

Personalised recommendations