Journal of Solid State Electrochemistry

, Volume 23, Issue 11, pp 2999–3008 | Cite as

Modeling fracture of solid electrolyte interphase in lithium-ion batteries during cycling

  • Qiufeng Deng
  • Ruiqin Hu
  • Chaoqun Xu
  • Bingbing ChenEmail author
  • Jianqiu ZhouEmail author
Original Paper


In lithium-ion batteries, the volume change of anode materials will result in fracture of solid electrolyte interphase (SEI) during continuous lithiation and delithiation. Herein, an analytical model has been developed to determine the fracture mechanism of the SEI and the fatigue in lithium-ion batteries. The evolution of diffusion-induced stresses and concentration have been evaluated. In addition, surface effects are found to effectively reduce the stresses and the crack propagation in SEI during lithiation. With combined energy release rate, the critical thickness of SEI is also established to prevent crack propagation. Finally, the capacity fade of lithium-ion batteries during cycling may be predicted using fatigue model. It is found that the depths of discharge (DODs) are closely related to the capacity fade of lithium-ion batteries. Overall, this work may provide physical understanding for optimized structural design to alleviate the SEI fracture and the fatigue of the lithium-ion batteries.


Stress Surface effects Fracture Solid electrolyte interphase 


Funding information

This work was supported by the Key Project of Chinese Ministry of Education (211061), the National Natural Science Foundation of China (10502025, 10872087, 11272143), and the Program for Chinese New Century Excellent Talents in university (NCET-12-0712), as well as the Ph.D. Programs Foundation of Ministry of Education of China (20133221110008), the Key University Science Research Project of Jiangsu Province (17KJA1300002), and the Project of Youth Talent of Guizhou Province (KY(2018)043).


  1. 1.
    Wu H, Chan G, Choi JW, Ryu I, Yao Y, Mcdowell MT, Lee SW, Jackson A, Yang Y, Hu L (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):310–315CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Blyth R, Buqa H, Netzer F, Ramsey M, Besenhard J, Golob P, Winter M (2000) XPS studies of graphite electrode materials for lithium ion batteries. Appl Surf Sci 167(1-2):99–106CrossRefGoogle Scholar
  3. 3.
    Hao F, Liu Z, Balbuena PB, Mukherjee PP (2017) Mesoscale elucidation of solid electrolyte interphase layer formation in Li-ion battery anode. J Phys Chem C 121(47):26233–26240CrossRefGoogle Scholar
  4. 4.
    Soto FA, Yan P, Engelhard MH, Marzouk A, Wang C, Xu G, Chen Z, Amine K, Liu J, Sprenkle VL, El-Mellouhi F, Balbuena PB, Li X (2017) Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv Mater 29(18):1606860CrossRefGoogle Scholar
  5. 5.
    Shin J, Ryu W-H, Park K-S, Kim I-D (2013) Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer. ACS Nano 7(8):7330–7341CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aifantis KE, Haycock M, Sanders P, Hackney SA (2011) Fracture of nanostructured Sn/C anodes during Li-insertion. Mater Sci Eng A 529:55–61CrossRefGoogle Scholar
  7. 7.
    Xiong S, Xie K, Blomberg E, Jacobsson P, Matic A (2014) Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. J Power Sources 252:150–155CrossRefGoogle Scholar
  8. 8.
    Eom K, Jung J, Lee JT, Lair V, Joshi T, Lee SW, Lin Z, Fuller TF (2015) Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 12:314–321CrossRefGoogle Scholar
  9. 9.
    Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429CrossRefGoogle Scholar
  10. 10.
    Shi S, Qi Y, Li H, Hector LG (2013) Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries. J Phys Chem C 117(17):8579–8593CrossRefGoogle Scholar
  11. 11.
    Zhang SS, Xu K, Jow TR (2006) EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim Acta 51(8-9):1636–1640CrossRefGoogle Scholar
  12. 12.
    Schranzhofer H, Bugajski J, Santner HJ, Korepp C, Möller KC, Besenhard JO, Winter M, Sitte W (2006) Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes. J Power Sources 153(2):391–395CrossRefGoogle Scholar
  13. 13.
    Radvanyi E, Van Havenbergh K, Porcher W, Jouanneau S, Bridel J-S, Put S, Franger S (2014) Study and modeling of the solid electrolyte interphase behavior on nano-silicon anodes by electrochemical impedance spectroscopy. Electrochim Acta 137:751–757CrossRefGoogle Scholar
  14. 14.
    Liu XR, Deng X, Liu RR, Yan HJ, Guo YG, Wang D, Wan LJ (2014) Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. ACS Appl Mater Interfaces 6(22):20317–20323CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim Acta 47(9):1423–1439CrossRefGoogle Scholar
  16. 16.
    Chen Y, Zhang D, Bian X, Bie X, Wang C, Du F, Jang M, Chen G, Wei Y (2012) Characterizations of the electrode/electrolyte interfacial properties of carbon coated Li3V2(PO4)3 cathode material in LiPF6 based electrolyte. Electrochim Acta 79:95–101CrossRefGoogle Scholar
  17. 17.
    Cho JH, Picraux ST (2014) Silicon nanowire degradation and stabilization during lithium cycling by SEI layer formation. Nano Lett 14(6):3088–3095CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Amanieu H-Y, Rosato D, Sebastiani M, Massimi F, Lupascu DC (2014) Mechanical property measurements of heterogeneous materials by selective nanoindentation: application to LiMn2O4 cathode. Mater Sci Eng A 593:92–102CrossRefGoogle Scholar
  19. 19.
    Philippe B, Dedryvère R, Allouche J, Lindgren F, Gorgoi M, Rensmo H, Gonbeau D, Edström K (2012) Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem Mater 24(6):1107–1115CrossRefGoogle Scholar
  20. 20.
    Chan CK, Ruffo R, Hong SS, Cui Y (2009) Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J Power Sources 189(2):1132–1140CrossRefGoogle Scholar
  21. 21.
    Tokranov A, Sheldon BW, Lu P, Xiao X, Mukhopadhyay A (2013) The origin of stress in the solid electrolyte interphase on carbon electrodes for Li ion batteries. J Electrochem Soc 161:A58–A65CrossRefGoogle Scholar
  22. 22.
    Zhang SS, Xu K, Jow TR (2004) Optimization of the forming conditions of the solid-state interface in the Li-ion batteries. J Power Sources 130(1-2):281–285CrossRefGoogle Scholar
  23. 23.
    Kumar R, Tokranov A, Sheldon BW, Xiao X, Huang Z, Li C, Mueller T (2016) In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Lett 1(4):689–697CrossRefGoogle Scholar
  24. 24.
    Kupper C, Weißhar B, Rißmann S, Bessler WG (2018) End-of-life prediction of a lithium-ion battery cell based on mechanistic aging models of the graphite electrode. J Electrochem Soc 165(14):A3468–A3480CrossRefGoogle Scholar
  25. 25.
    He Y, Hu H (2015) Analysis of lithium ion concentration and stress in the solid electrolyte interphase on the graphite anode. Phys Chem Chem Phys 17(36):23565–23572CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cheng Y-T, Verbrugge MW (2008) The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J Appl Phys 104(8):083521CrossRefGoogle Scholar
  27. 27.
    Zhang K, Li Y, Zheng B, Wu G, Wu J, Yang F (2017) Large deformation analysis of diffusion-induced buckling of nanowires in lithium-ion batteries. Int J Solids Struct 108:230–243CrossRefGoogle Scholar
  28. 28.
    Timoshenko S, Goodier JN, Abramson HN (1970) Theory of elasticity. J Appl Mech 37(3):888CrossRefGoogle Scholar
  29. 29.
    Deshpande R, Cheng Y-T, Verbrugge MW (2010) Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources 195(15):5081–5088CrossRefGoogle Scholar
  30. 30.
    Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4):535–537CrossRefGoogle Scholar
  31. 31.
    Laresgoiti I, Käbitz S, Ecker M, Sauer DU (2015) Modeling mechanical degradation in lithium ion batteries during cycling: solid electrolyte interphase fracture. J Power Sources 300:112–122CrossRefGoogle Scholar
  32. 32.
    Deshpande RD, Bernardi DM (2017) Modeling solid-electrolyte interphase (SEI) fracture: coupled mechanical/chemical degradation of the lithium ion battery. J Electrochem Soc 164(2):A461–A474CrossRefGoogle Scholar
  33. 33.
    Pharr M, Suo Z, Vlassak JJ (2013) Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. Nano Lett 13(11):5570–5577CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Basquin O (1910) Proc Am Soc Test Mater:625–630Google Scholar
  35. 35.
    Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12:A159–A164Google Scholar
  36. 36.
    Palmgren A (1924) Die Lebensdauer von Kuegellagern. Z Ver DtschIng 68:339–341Google Scholar
  37. 37.
    Safari M, Morcrette M, Teyssot A, Delacourt C (2010) Life-prediction methods for lithium-ion batteries derived from a fatigue approach. J Electrochem Soc 157(6):A713–A720CrossRefGoogle Scholar
  38. 38.
    Winter M (2009) Z Phys Chem 223(10-11):1395–1406CrossRefGoogle Scholar
  39. 39.
    Nie M, Abraham DP, Seo DM, Chen Y, Lucht BL (2013) Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. J Phys Chem C 117(48):25381–25389CrossRefGoogle Scholar
  40. 40.
    Bülter H, Peters F, Schwenzel J, Wittstock G (2015) Comparison of electron transfer properties of the SEI on graphite composite and metallic lithium electrodes by SECM at OCP. J Electrochem Soc 162(13):A7024–A7036CrossRefGoogle Scholar
  41. 41.
    Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1-2):269–281CrossRefGoogle Scholar
  42. 42.
    Agubra VA, Fergus JW (2014) The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sources 268:153–162CrossRefGoogle Scholar
  43. 43.
    Xu C, Weng L, Ji L, Zhou J (2019) An analytical model for the fracture behavior of the flexible lithium-ion batteries under bending deformation. Eur J Mech A Solid 73:47–56CrossRefGoogle Scholar
  44. 44.
    Hu X, Zhao Y, Cai R, Zhou J (2017) Surface effected fracture behavior of nano-spherical electrodes during lithiation reaction. Mater Sci Eng A 707:92–100CrossRefGoogle Scholar
  45. 45.
    Wu B, Lu W (2017) Mechanical modeling of particles with active core–shell structures for lithium-ion battery electrodes. J Phys Chem C 121(35):19022–19030CrossRefGoogle Scholar
  46. 46.
    Zhao K, Pharr M, Hartle L, Vlassak JJ, Suo Z (2012) Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures. J Power Sources 218:6–14CrossRefGoogle Scholar
  47. 47.
    Kang K-W, Kim J-K (2004) Fatigue life prediction of impacted carbon/epoxy laminates under constant amplitude loading. Compos Part A 35(5):529–535CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Power EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Department of Energy Science and EngineeringNanjing Tech UniversityNanjingChina
  3. 3.School of Mechatronics EngineeringGuizhou Minzu UniversityGuiyangChina

Personalised recommendations