Advertisement

Unveiling ionic diffusion in MgNiMnO4 cathode material for Mg-ion batteries via combined computational and experimental studies

  • H. Shasha
  • N. Yatom
  • M. Prill
  • J. Zaffran
  • S. Biswas
  • D. Aurbach
  • M. Caspary TorokerEmail author
  • Y. Ein-EliEmail author
Short Communication

Abstract

A major challenge in the field of rechargeable Mg batteries is the development of high voltage/high capacity cathode materials. Naturally, a first step in a general search of cathode materials for Mg batteries should be following the plethora of cathode materials relevant to Li-ion batteries. Indeed, several compounds that were thoroughly studied in connection to Li-ion batteries were found to interact reversibly with Mg ions, as well. The functionality of metal ion batteries relies on an efficient ionic transport within the electrodes’ active mass. In this study, we examined the extreme case of the MgNiMnO4 material, using a combination of computational and experimental techniques. The scientific question being raised in this study was whether Mg ions can be extracted electrochemically from this compound. The experiments provided a negative answer and calculations based on density functional theory (DFT) + U showed that indeed Mg ions diffusion in this material is energetically unfavorable. It was confirmed again how computational work can be very useful in predicting barriers for ionic diffusion in hosts and hence, can save much of tedious experimental works.

Graphical abstract

A combination of computational (Density Functional Theory (DFT) + U) and experimental techniques were applied for a modeling of Mg ionic movement in the MgNiMnO4 crystal. We report here that Mg diffusion is energetically unfavorable.

Keywords

Ionic diffusion Density functional theory DFT + U Mg-ion batteries Transition metal oxides Spinel structure 

Notes

Funding information

The work was supported by ISAEF-Israel Strategic Alternative Energy Foundation, INREP-2 [2nd Israel National Research on Electrochemical Propulsion], the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program. The guest stay of M. Prill at the Technion was financially supported by the HITEC graduate school exchange program of Forschungszentrum Jülich.

Supplementary material

10008_2019_4401_MOESM1_ESM.docx (280 kb)
ESM 1 (DOCX 279 kb)

References

  1. 1.
    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265–2279CrossRefGoogle Scholar
  2. 2.
    Lin MC, Gong N, Lu B, Wu Y, Wang DY et al (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):324–328CrossRefGoogle Scholar
  3. 3.
    Novák P, Imhof R, Haas O (1999) Magnesium insertion electrodes for rechargeable nonaqueous batteries - a competitive alternative to lithium? Electrochim Acta 45(1-2):351–367CrossRefGoogle Scholar
  4. 4.
    Shterenberg I, Salama M, Gofer Y, Levi E, Aurbach D (2014) The challenge of developing rechargeable magnesium batteries. MRS Bull 39(5):453–460CrossRefGoogle Scholar
  5. 5.
    Knight JC, Therese S, Manthiram A (2015) On the utility of spinel oxide hosts for magnesium-ion batteries. ACS Appl Mater Interfaces 7(41):22953–22961CrossRefGoogle Scholar
  6. 6.
    Yuan H, Jiao L, Cao J, Liu X (2004) Development of magnesium-insertion positive electrode for rechargeable magnesium batteries. J Mater Sci Technol 20:41–45Google Scholar
  7. 7.
    Amir N, Vestfrid Y, Chusid O, Gofer Y, Aurbach D (2007) Progress in nonaqueous magnesium electrochemistry. J Power Sources 174(2):1234–1240CrossRefGoogle Scholar
  8. 8.
    Whittingham MS (1978) Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog Solid State Chem 12(1):41–99CrossRefGoogle Scholar
  9. 9.
    Novak P, Desilvestro J (1993) Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J Electrochem Soc 140(1):140–144CrossRefGoogle Scholar
  10. 10.
    Sánchez L, Pereira-Ramos JP (1997) Electrochemical insertion of magnesium in a mixed manganese–cobalt oxide. J Mater Chem 7(3):471–473CrossRefGoogle Scholar
  11. 11.
    Pereira-Ramos JP, Messina R, Perichon J (1987) Electrochemical formation of a magnesium vanadium bronze MgxV2O5 in sulfone-based electrolytes at 150°C. J Electroanal Chem Interfacial Electrochem 218(1-2):241–249CrossRefGoogle Scholar
  12. 12.
    Shklover V, Haibach T, Ried F, Nesper R, Novák P (1996) Crystal structure of the product of Mg2+insertion into V2O5 single crystals. J Solid State Che 123(2):317–323CrossRefGoogle Scholar
  13. 13.
    Novák P, Scheifele W, Joho F, Haas O (1995) Electrochemical insertion of magnesium into hydrated vanadium bronzes. J Electrochem Soc 142(8):2544–2550CrossRefGoogle Scholar
  14. 14.
    Spahr ME, Novák P, Haas O, Nesper R (1995) Electrochemical insertion of lithium, sodium, and magnesium in molybdenum (VI) oxide. J Power Sources 54(2):346–351CrossRefGoogle Scholar
  15. 15.
    Rao CNR, Pisharody KPR (1976) Transition metal sulfides. Prog Solid State Chem 10:207–270CrossRefGoogle Scholar
  16. 16.
    Yuan W (1995) Insertion of bivalent cations into monoclinic NbS3 prepared under high pressure and their secondary batteries. Solid State Ionics 76(3-4):253–258CrossRefGoogle Scholar
  17. 17.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H et al (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRefGoogle Scholar
  18. 18.
    Goodenough JB, Loeb AL (1955) Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in Spinels. Phys Rev 98(2):391–408CrossRefGoogle Scholar
  19. 19.
    Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn JR (1997) Synthesis and electrochemistry of LiNixMn2 − x O 4. J Electrochem Soc 144(1):205–213CrossRefGoogle Scholar
  20. 20.
    Gao Y, Myrtle K, Zhang M, Reimers J, Dahn JR (1996) Valence band of LiNixMn2-xO4 and its effects on the voltage profiles of LiNixMn2-xO4/Li electrochemical cells. Phys Rev B 54(23):16670–16675CrossRefGoogle Scholar
  21. 21.
    Kim JH, Myung ST, Yoon CS, Kang SG, and Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3̄m and P4332, Chem Mater16: 906–914Google Scholar
  22. 22.
    Feltz A, Neidnicht B (1991) Investigations on electronically conducting oxide systems XX. MgNiMnO4 and properties of MgzNiMn2−zO4 spinels. J Alloys and Compounds 177(1):149–158CrossRefGoogle Scholar
  23. 23.
    Wickham DG (1964) Solid-phase equilibria in the system NiO-Mn2O3-O2. J Inorg Nucl Chem 26: 1369–1377Google Scholar
  24. 24.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRefGoogle Scholar
  26. 26.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Physics Condensed Matter 21(39):395502–395521CrossRefGoogle Scholar
  27. 27.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys Rev B 57(3):1505–1509CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  29. 29.
    Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys Rev B 70(23):235121–235128CrossRefGoogle Scholar
  30. 30.
    Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B 73(19):195107–195113CrossRefGoogle Scholar
  31. 31.
    Anisimov VI, Aryasetiawan F, Lichtenstein (1997) A first-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ U method. J Physics: Condensed Matter 9: 767–808Google Scholar
  32. 32.
    Rollmann G, Rohrbach A, Entel P, Hafner J (2004) First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B 69(16):165107–165119CrossRefGoogle Scholar
  33. 33.
    Mosey NJ, Liao P, Carter EA (2008) Rotationally invariant ab initio evaluation of coulomb and exchange parameters for DFT+U calculations. J Chem Phys 129(1):014103–014116CrossRefGoogle Scholar
  34. 34.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  35. 35.
    Blöchl PE Projector (1994) Augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  36. 36.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43(3):1993–2006CrossRefGoogle Scholar
  37. 37.
    Ritzmann AM, Muñoz-García AB, Pavone M, Keith JA, Carter EA (2013) Ab initio DFT+U analysis of oxygen vacancy formation and migration in La1-XSrXFeO3-δ (X=0, 0.25, 0.50). Chem Mater 25(15):3011–3019CrossRefGoogle Scholar
  38. 38.
    Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(23):16223–16233CrossRefGoogle Scholar
  39. 39.
    Lehmann G, Taut M (1972) On the numerical calculation of the density of states and related properties. Phys Status Solidi B 54(2):469–477CrossRefGoogle Scholar
  40. 40.
    Momma K, Izumi F (2008) Vesta: a three-dimensional visualization system for electronic and structural analysis. J Applied Crystallography 41(3):653–658CrossRefGoogle Scholar
  41. 41.
    Ma X, Kang B, Ceder G (2010) High rate micron-sized ordered LiNi0.5Mn1.5O4. J Electrochem Soc 157:A925–A931CrossRefGoogle Scholar
  42. 42.
    Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354–1356CrossRefGoogle Scholar
  43. 43.
    Doe RE et.al. (2012) Electrode materials for magnesium batteries. US Patent US20120219859A1Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Institute of Energy and Climate Research (IEK-2)JülichGermany
  3. 3.Department of ChemistryBar-Ilan UniversityRamat GanIsrael
  4. 4.Grand Technion Energy ProgramTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations