Journal of Solid State Electrochemistry

, Volume 23, Issue 12, pp 3399–3408 | Cite as

Preparation oaf polyaniline/diazonium salt/TiO2 nanotube arrays as supercapacitor electrode by electrochemical grafting and deposition

  • Qinlei Chen
  • Zhengbin XiaEmail author
  • Yanhong Zhang
  • Shumin Wang
Original Paper


Polyaniline/diazonium salt/TiO2 nanotube arrays (PANI/DZ/TiO2 NAs), as a supercapacitor electrode material, are fabricated by two-step anodic oxidation of titanium foils, electrochemical grafting and reduction of diazonium salts, and electrochemical deposition of polyaniline. Surface morphology, crystallization, and chemical compositions of nanocomposites are characterized by SEM, EDX, XRD, and Raman. Electrochemical tests indicate that PANI/DZ/TiO2 NAs have excellent capacitance of 1108.5 F g−1 when the current density is 0.6 A g−1. With the current density increasing 20 times to 12 A g−1, the capacitance remains about 77.5%, demonstrating its good rate performance. Moreover, after 2000 charge–discharge cycles at 12 A g−1, the capacitance retains 83.7% of the initial value, showing its good cycling stability.


Titanium dioxide nanotube arrays Diazonium salts Polyaniline Electrochemical performance Supercapacitor 



  1. 1.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211PubMedGoogle Scholar
  2. 2.
    Hu ZK, Zu L, Jiang YH, Lian HQ, Liu Y, Li ZZ, Chen F, Wang XD, Cui XG (2015) High specific capacitance of polyaniline/mesoporous manganese dioxide composite using KI-H2SO4 electrolyte. Polymers 7(10):1939–1953Google Scholar
  3. 3.
    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502PubMedGoogle Scholar
  4. 4.
    Li ZH, Li LQ, Li ZP, Liao HY, Zhang HY (2016) Ultrathin carbon gauze for high-rate supercapacitor. Electrochim Acta 222:990–998Google Scholar
  5. 5.
    Yu GH, Hu LB, Liu N, Wang HL, Vosgueritchian M, Yang Y, Cui Y, Bao ZN (2015) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11:4438–4442Google Scholar
  6. 6.
    Qi YH, Liu YF, Zhu R, Wang QL, Luo YL, Zhu CF, Lyu YN (2019) Rapid synthesis of Ni(OH)2/graphene nanosheets and NiO@Ni(OH)2/graphene nanosheets for supercapacitor applications. New J Chem 43(7):3091–3098Google Scholar
  7. 7.
    Yan Z, Shi TL, Huang YY, Cheng SY, Liao GL, Tang ZR (2018) One-step synthesis of porous carbon derived from starch for all-carbon binder-free high-rate supercapacitor. Electrochim Acta 269:676–685Google Scholar
  8. 8.
    Shao Z, Li HJ, Li MJ, Li CP, Qu CQ, Yang BH (2015) Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors. Energy 87:578–585Google Scholar
  9. 9.
    Zhang HQ, Hu LW, Tu JG, Jiao SQ (2014) Electrochemically assembling of polythiophene film in ionic liquids (ILs) microemulsions and its application in an electrochemical capacitor. Electrochim Acta 120:122–127Google Scholar
  10. 10.
    Sharma RK, Rastogi AC, Desu SB (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem Commun 10(2):268–272Google Scholar
  11. 11.
    He Y, Du SS, Li HL, Cheng QL, Pavlinek V, Saha P (2016) MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes. J Solid State Electrochem 20(5):1459–1467Google Scholar
  12. 12.
    Zang XB, Li X, Zhu M, Li XM, Zhen Z, He YJ, Wang KL, Wei JQ, Kang FY, Zhu HW (2015) Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 7(16):7318–7322PubMedGoogle Scholar
  13. 13.
    Li Q, Xia ZB, Wang SM, Zhang YJ, Zhang YH (2017) The preparation and characterization of electrochemical reduced TiO2 nanotubes/polypyrrole as supercapacitor electrode material. J Solid State Electrochem 21(8):2177–2184Google Scholar
  14. 14.
    Lee KY, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114(19):9385–9454PubMedGoogle Scholar
  15. 15.
    Mujawar SH, Ambade SB, Battumur T, Ambade RB, Lee SH (2011) Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim Acta 56(12):4462–4466Google Scholar
  16. 16.
    Wang SM, Xia ZB, Li Q, Zhang YH (2017) Fabrication of polyaniline/self-doped TiO2 nanotubes hybrids as supercapacitor electrode by microwave-assisted chemical reduction and electrochemical deposition. J Electrochem Soc 164(13):D901–D907Google Scholar
  17. 17.
    Palmas S, Mascia M, Vacca A, Llanos J, Mena E (2014) Analysis of photocurrent and capacitance of TiO2 nanotube-polyaniline hybrid composites synthesized through electroreduction of an aryldiazonium salt. RSC Adv 4(46):23957–23965Google Scholar
  18. 18.
    Xie KY, Li J, Lai YQ, Zhang ZA, Liu YX, Zhang GG, Huang HT (2011) Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale 3(5):2202–2207PubMedGoogle Scholar
  19. 19.
    Xie S, Gan MY, Ma L, Li ZT, Yan J, Yin H, Shen XY, Xu FF, Zheng JY, Zhang J, Hu JL (2014) Synthesis of polyaniline-titania nanotube arrays hybrid composite via self-assembling and graft polymerization for supercapacitor application. Electrochim Acta 120:408–415Google Scholar
  20. 20.
    Bousquet A, Awada H, Hiorns RC, Dagron-Lartigau C, Billon L (2014) Conjugated-polymer grafting on inorganic and organic substrates: a new trend in organic electronic materials. Prog Polym Sci 39(11):1847–1877Google Scholar
  21. 21.
    Higaki Y, Kobayashi M, Hirai T, Takahara A (2017) Direct polymer brush grafting to polymer fibers and films by surface-initiated polymerization. Polym J 50:101–108Google Scholar
  22. 22.
    Assresahegn BD, Brousse T, Bélanger D (2015) Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon 92:362–381Google Scholar
  23. 23.
    Santos LM, Ghilane J, Fave C, Lacaze PC, Randriamahazaka H, Abrantes LM, Lacroix JC (2010) Electrografting polyaniline on carbon through the electroreduction of diazonium salts and the electrochemical polymerization of aniline. J Phys Chem C 112:16103–16109Google Scholar
  24. 24.
    Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi MM (2011) ChemInform abstract: aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40(7):4143–4166PubMedGoogle Scholar
  25. 25.
    Delamar M, Hitmi R, Pinson J, Saveant JM (1992) Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc 114(14):5883–5884Google Scholar
  26. 26.
    Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Savéant JM (1997) Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J Am Chem Soc 119:138–142Google Scholar
  27. 27.
    Pinson J, Podvorica F (2005) Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem Soc Rev 34(5):429–439PubMedGoogle Scholar
  28. 28.
    Bélanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40(7):3995–4048PubMedGoogle Scholar
  29. 29.
    Zeb G, Gaskell P, Le XT, Xiao X, Szkopek T, Cerruti M (2012) Decoration of graphitic surfaces with Sn nanoparticles through surface functionalization using diazonium chemistry. Langmuir 28(36):13042–13050PubMedGoogle Scholar
  30. 30.
    Marwan J, Addou T, Bélanger D (2005) Functionalization of glassy carbon electrodes with metal-based species. Chem Mater 17(9):2395–2403Google Scholar
  31. 31.
    Li H, Xing JH, Xia ZB, Chen JQ (2014) Preparation of extremely smooth and boron-fluorine co-doped TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic performance. Electrochim Acta 139:331–336Google Scholar
  32. 32.
    Xing JH, Hui L, Xia ZB, Chen JQ, Zhang YH, Li Z (2014) Influence of substrate morphology on the growth and properties of TiO2 nanotubes in HBF4 based electrolyte. Electrochim Acta 134:242–248Google Scholar
  33. 33.
    Kitada A, Hasegawa G, Kobayashi Y, Kanamori K, Nakanishi K, Kageyama H (2012) Selective preparation of macroporous monoliths of conductive titanium oxides TinO2n–1 (n = 2, 3, 4, 6). J Am Chem Soc 134(26):10894–10898PubMedGoogle Scholar
  34. 34.
    Su HF, Wang T, Zhang SY, Song JM, Mao CJ, Niu HL, Jin BK, Wu JY, Tian YP (2012) Facile synthesis of polyaniline/TiO2/graphene oxide composite for high performance supercapacitors. Solid State Sci 14(6):677–681Google Scholar
  35. 35.
    Cai GF, Tu JP, Zhou D, Zhang JH, Xiong QQ, Zhao XY, Wang XL, Gu CD (2013) Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J Phys Chem C 117(31):15967–15975Google Scholar
  36. 36.
    Salari M, Aboutalebi SH, Chidembo AT, Nevirkovets IP, Konstantinov K, Liu HK (2012) Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile. Phys Chem Chem Phys 14(14):4770–4779PubMedGoogle Scholar
  37. 37.
    Peng X, Huo KF, Fu JJ, Zhang XM, Gao B, Chu PK (2013) Coaxial PANI/TiN/PANI nanotube arrays for high-performance supercapacitor electrodes. Chem Commun 49(86):10172–10174Google Scholar
  38. 38.
    Stève B, Daniel B (2005) Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations. J Phys Chem B 109:24401–24410Google Scholar
  39. 39.
    Santos LM, Ghilane J, Fave C, Lacaze PC, Randriamahazaka H, Abrantes LM, Lacroix JC (2008) Electrografting polyaniline on carbon through the electroreduction of diazonium salts and the electrochemical polymerization of aniline. J Phys Chem C 112(41):16103–16109Google Scholar
  40. 40.
    Tiddia M, Mula G, Mascia M, Sechi E, Vacca A (2016) Porous silicon–polyaniline hybrid composites synthesized through electroreduction of an aryldiazonium salt: preparation and photocurrent properties. RSC Adv 6(104):101880–101887Google Scholar
  41. 41.
    Greenwood J, Phan TH, Fujita Y, Li Z, Ivasenko O, Vanderlinden W, Gorp HV, Frederickx W, Lu G, Tahara K (2015) Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and Nanomanipulation. ACS Nano 9(5):5520–5535PubMedGoogle Scholar
  42. 42.
    Zhang QQ, Li Y, Feng YY, Feng W (2013) Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor. Electrochim Acta 90:95–100Google Scholar
  43. 43.
    Chen JQ, Xia ZB, Li H, Li Q, Zhang YH (2015) Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition. Electrochim Acta 166:174–182Google Scholar
  44. 44.
    Singu BS, Male U, Srinivasan P, Yoon KR (2017) Preparation and performance of polyaniline–multiwall carbon nanotubes–titanium dioxide ternary composite electrode material for supercapacitors. J Ind Eng Chem 49:82–87Google Scholar
  45. 45.
    Mousli F, Chaouchi A, Hocine S, Lamouri A, Rei Vilar M, Kadri A, Chehimi MM (2019) Diazonium-modified TiO2/polyaniline core/shell nanoparticles. Structural characterization, interfacial aspects and photocatalytic performances. Appl Surf Sci 465:1078–1095Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations