Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 11, pp 3173–3185 | Cite as

Laser method of microscopic sensor synthesis for liquid and gas analysis using glucose and H2S as an example

  • A. V. Smikhovskaia
  • M. O. Novomlinsky
  • A. A. Fogel
  • S. V. Kochemirovskaia
  • D. V. Lebedev
  • V. A. KochemirovskyEmail author
Original Paper
  • 32 Downloads

Abstract

Laser-induced deposition of metals from a solution has been used as a new method for the synthesis of microcomposite materials in the copper-silver system. It was shown that the obtained materials have good sensory properties with respect to the determination of d-glucose in aqueous solutions. It is also shown that it can be used for gas sensors. Control of sensory properties can be done by changing the method of deposition. X-ray diffraction, EDX, and impedance spectroscopy were used to characterize the materials obtained and it was shown that laser sequential deposition and coprecipitation of two metals give different results. An explanation of the results was proposed. It explains them by the eutectic nature of the interaction in the copper-silver system.

Notes

Acknowledgments

All authors are grateful to Professor S.S. Ermakov (St. Petersburg University) for their invaluable assistance in processing and interpreting the data of electrochemical analysis and PhD Navolotskaya D. for their help in writing the article.

All the authors acknowledge Russian Fund for Basic Research (grants 17-03-01266) and express their gratitude to the SPbSU Nanotechnology Interdisciplinary Centre, Centre for Optical and Laser Materials Research, Centre for Physical Methods of Surface Investigation, Centre for Geo-Environmental Research and Modelling (GEOMODEL), Centre for X-ray Diffraction Studies, and Chemistry Educational Centre.

Funding information

The reported study was funded by RFBR according to the research project no. 17-03-01266.

References

  1. 1.
    Panov MS, Vereshchagina OA, Ermakov SS, Tumkin II, Khairullina EM, Skripkin MY, Mereshchenko AS, Ryazantsev MN, Kochemirovsky VA (2017) Non-enzymatic sensors based on in situ laser-induced synthesis of copper-gold and gold nano-sized microstructures. Talanta 167:201–207CrossRefGoogle Scholar
  2. 2.
    Piao YZ, Burns A, Kim J, Wiesner U, Hyeon T (2008) Amperometric immunosensor for α-fetoprotein antigen in human serum based on co-immobilizing dinuclear copper complex and gold nanoparticle doped chitosan film. Adv Funct Mater 18(23):3745–3758CrossRefGoogle Scholar
  3. 3.
    Chen S, Malig M, Tian M, Chen A (2012) Electrocatalytic activity of PtAu nanoparticles deposited on TiO2 nanotubes. J Phys Chem C 116(5):3298–3304CrossRefGoogle Scholar
  4. 4.
    Wang W, Asher SA (2001) Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications. J Am Chem Soc 123(50):12528–12535CrossRefGoogle Scholar
  5. 5.
    Baranauskaite VE, Novomlinskii MO, Tumkin II, Khairullina EM, Panov MS, Kochemirovsky VA (2019) In situ laser-induced synthesis of gas sensing microcomposites based on molybdenum and its oxides. Compos Part B 157:322–330CrossRefGoogle Scholar
  6. 6.
    Smikhovskaia AV, Panov MS, Tumkin II, Khairullina EM, Ermakov SS, Balova IA, Ryazantsev MN, Kochemirovsky VA (2018) In situ laser-induced codeposition of copper and different metals for fabrication of microcomposite sensor-active materials. Anal Chim Acta 1044:138–146CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barazzouk S, Tandon RP, Hotchandani S (2006) MoO3-based sensor for NO, NO2 and CH4 detection. Sens Actuators В 119(2):691–694CrossRefGoogle Scholar
  8. 8.
    Chen D, Liu M, Yin L, Li T, Yang Z, Li X, Fan B, Wang H, Zhang R, Li Z, Xu H, Lu H, Yang D, Sun J, Gao L (2011) Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance. J Mater Chem 21(25):9332–9342CrossRefGoogle Scholar
  9. 9.
    Kim W-S, Kim H-C, Hong S-H (2010) Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method. J Nanopart Res 12(5):1889–1896CrossRefGoogle Scholar
  10. 10.
    Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8(2):126–131CrossRefGoogle Scholar
  11. 11.
    Tang SC, Vongehr S, Meng XK (2010) Controllable incorporation of Ag and Ag–Au nanoparticles in carbon spheres for tunable optical and catalytic properties. J Mater Chem 20(26):5436–5445CrossRefGoogle Scholar
  12. 12.
    Liu W, Zhang H, Yang B, Li Z, Lei L, Zhang X (2015) A non-enzymatic hydrogen peroxide sensor based on vertical NiO nanosheets supported on the graphite sheet. J Electroanal Chem 749:62–67CrossRefGoogle Scholar
  13. 13.
    Gorski W, Kennedy RT (1997) Electrocatalyst for non-enzymatic oxidation of glucose in neutral saline solutions. J Electroanal Chem 424(1-2):43–48CrossRefGoogle Scholar
  14. 14.
    Von Gutfeld RJ, Tynan ЕЕ, Melcher RL, Blum SE (1979) Laser enhanced electroplating and maskless pattern generation. Appl Phys Lett 35(9):651–653CrossRefGoogle Scholar
  15. 15.
    Kochemirovsky VA, Skripkin MY, Tveryanovich YS, Mereshchenko AS, Gorbunov AO, Panov MS, Tumkin II, Safonov SV (2015) Laser-induced copper deposition from aqueous and aqueous ± organic solutions: state of the art and prospects of research. Russ Chem Rev 84(10):1059–1075CrossRefGoogle Scholar
  16. 16.
    Kordás K, Békési J, Vajtai R, Nánai L, Leppävuori S et al (2001) Laser-assisted metal deposition from liquid-phase precursors on polymer. Appl Surf Sci 172(1-2):178–189CrossRefGoogle Scholar
  17. 17.
    Tver’yanovich YS, Kuzmin AG, Menchikov LG, Kochemirovsky VA, Safonov SV, Tumkin II, Povolotsky AV, Manshina AA (2011) Composition of the gas phase formed upon laser-induced copper deposition from solutions. Mendeleev Commun 21(1):34–35CrossRefGoogle Scholar
  18. 18.
    Kordás K, Bali K, Leppävuori S, Uusimäki A, Nánai L (2000) Laser direct writing of copper on polyimide surfaces from solution. Appl Surf Sci 399:154–155Google Scholar
  19. 19.
    Ng JHG, Desmulliez MPY, McCarthy A, Suyal H, Prior KA, Hand DP (2008) UV direct-writing of metals on polyimide. DTIP of MEMS and MOEMS 360Google Scholar
  20. 20.
    Shafeev GA (1993) Laser activation and metallization of oxide ceramics. Adv Mater Opt Electron 2(4):183–189CrossRefGoogle Scholar
  21. 21.
    Kordas K, Remes J, Leppavuori S, Nanai L (2001) Laser-assisted selective deposition of nickel patterns on porous silicon substrates. Appl Surf Sci 178:93CrossRefGoogle Scholar
  22. 22.
    Yokoyama H, Washio K (1984) Laser induced metal deposition from organometallic solution. Appl Phys Lett 44:755CrossRefGoogle Scholar
  23. 23.
    Kordás K, Bali K, Leppävuori S, Uusimäki A, Nánai L (2000) Laser direct writing of copper on polyimide surfaces from solution. Appl Surf Sci 154:399–404CrossRefGoogle Scholar
  24. 24.
    Hien VX, You JL, Jo KM, Kim SY, Lee JH, Kim JJ, Heo YW (2014) H2S-sensing properties of Cu2O submicron-sized rods and trees synthesized by radio-frequency magnetron sputtering. Sensors Actuators B Chem 202:330–338CrossRefGoogle Scholar
  25. 25.
    Gao XM, Sun Y, Zhu CL, Li CY, Ouyang QY, Chen YJ (2017) Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets. Sensors Actuators B Chem 246:662–672CrossRefGoogle Scholar
  26. 26.
    Li ZJ, Wang NN, Lin ZJ, Wang JQ, Liu W, Sun K, Fu YQ, Wang ZG (2016) Room-temperature high-performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method. Appl Mater Interfaces 8(32):20962–20968CrossRefGoogle Scholar
  27. 27.
    Zhang J, Liu XH, Wu SH, Zheng SH (2012) One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sensors Actuators B Chem 169:61–66CrossRefGoogle Scholar
  28. 28.
    Ju DX, Xu HY, Xu Q, Gong HB, Qiu ZW, Guo J, Zhang J, Cao BQ (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sensors Actuators B Chem 215:39–44CrossRefGoogle Scholar
  29. 29.
    Gordeychuk D, Kochemirovsky V, Sorokoumov V, Kuzmin A, Balova I (2017) Copper particles generated during in situ laser-induced synthesis exhibit catalytic activity towards formation of gas phase. J Laser Micro/Nanoeng 12(2):57–61CrossRefGoogle Scholar
  30. 30.
    Panov MS, Tumkin II, Mironov VS, Khairullina EM, Smikhovskaia AV, Ermakov SS, Kochemirovsky VA (2016) Sensory properties of copper microstructures deposited from water-based solution upon laser irradiation at 532 nm. Opt Quant Electron 48(11):490CrossRefGoogle Scholar
  31. 31.
    Cao CD, Gorler GP, Herlach DM, Wei B (2002) Liquid phase separation in undercooled Co-Cu alloys. Adv Mater Sci Eng 325:503–510Google Scholar
  32. 32.
    Chudakova MV, Kulikova MV, Ivantsov MI, Bondarenko GN, Efimov MN, Vasil’ev AA, Zemtsov LM, Karpacheva GP, Khadzhiev SN (2017) Cellulose-based copper–cobalt solid dispersed composite catalysts and their physicochemical and catalytic properties in alcohol synthesis. Pet Chem 57(8):694–699CrossRefGoogle Scholar
  33. 33.
    Hansen M, Elliott RP (1965) Constitution of binary alloys, first supplement. McGraw-Hill, New YorkGoogle Scholar
  34. 34.
    Su T, Xiao H, Shen W, Hu C, Tang C (2018) Nonlinear size-dependent melting of silica-encapsulated Ag-Cu alloy nanoparticles. J Phys Chem C 122(48):27761–27768CrossRefGoogle Scholar
  35. 35.
    Wang L-W, Hou J, Lu H-M, Lu W-J, Dai Y-F, Luo C-L (2019) The liquid-solid phase transition characteristics of AgxCu(500-x) alloy particles: a molecular dynamics study. Mater Res Express 6(2)Google Scholar
  36. 36.
    Pinkas J, Sopoušek J, Brož P, Vykoukal V, Buršík J, Vřešťál J (2019) Synthesis, structure, stability and phase diagrams of selected bimetallic silver- and nickel-based nanoparticles. CALPHAD: Comput Coupling Phase Diagrams Thermochem 64:139–148CrossRefGoogle Scholar
  37. 37.
    Kochemirovsky VA, Logunov LS, Safonov SV, Tver’yanovich YS, Menchikov LG (2012) Sorbitol as an efficient reducing agent for laser-induced copper deposition. Appl Surf Sci 259:55–58CrossRefGoogle Scholar
  38. 38.
    Mingzhe J, Tong W, Fenfen L, Jingbo H (2012) A novel process for the fabrication of a silver-nanoparticle-modified electrode and its application in nonenzymatic glucose sensing. Electroanalysis 24(9):1864–1868CrossRefGoogle Scholar
  39. 39.
    Niu X, Li Y, Tang J, Hu Y, Zhao H, Lan M (2014) Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a cu foam case. Biosens Bioelectron 51:22–28CrossRefGoogle Scholar
  40. 40.
    Fang B, Gu A, Wang G, Wang W, Feng Y, Zhang C, Zhang X (2009) Silver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor. ACS Appl Mater Interfaces 1(12):2829–2834CrossRefGoogle Scholar
  41. 41.
    Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem 5:1246–1301Google Scholar
  42. 42.
    Wang X, Hu C, Liu H, Du G, He X, Xi Y (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors Actuators B Chem 144(1):220–225CrossRefGoogle Scholar
  43. 43.
    Vesali-Naseh M, Khodadadi AA, Mortazavi Y, Moosavi-Movahedi AA, Ostrikove K (2016) H2O/air plasma-functionalized carbon nanotubes decorated with MnO2 for glucose sensing. RSC Adv 6(38):31807–31815CrossRefGoogle Scholar
  44. 44.
    Wang L, Zheng Y, Lu X, Li Z, Sun L, Song Y (2014) Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing. Sensors Actuators B Chem 195:1–7CrossRefGoogle Scholar
  45. 45.
    He L, Liu Q, Zhang S, Zhang X, Gong C, Shu H, Wang G, Liu H, Wen S, Zhang B (2018) High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application. Electrochem Commun 94:18–22CrossRefGoogle Scholar
  46. 46.
    Ammara S, Shamaila S, Zafar N, Bokhari A, Sabah A (2018) Nonenzymatic glucose sensor with high performance electrodeposited nickel/copper/carbon nanotubes nanocomposite electrode. J Phys Chem Solids 120:12–19CrossRefGoogle Scholar
  47. 47.
    Elahi MY, Heli H, Bathaie SZ (2007) Electrocatalytic oxidation of glucose at Ni-curcumin modified glassy carbon electrode. J Solid State Electrochem 11:273–282CrossRefGoogle Scholar
  48. 48.
    Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2009) Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electrochem 13(8):1171–1179CrossRefGoogle Scholar
  49. 49.
    Berkkan A, Seçkin AI, Pekmez K, Tamer U (2010) Amperometric enzyme electrode for glucose determination based on poly(pyrrole-2-aminobenzoic acid). J Solid State Electrochem 4(6):975–980CrossRefGoogle Scholar
  50. 50.
    Han X, Zhu Y, Yang X, Zhang J, Li C (2011) Dendrimer-encapsulated Pt nanoparticles on mesoporous silica for glucose detection. J Solid State Electrochem 15(3):511–517CrossRefGoogle Scholar
  51. 51.
    Chen D-J, Lu Y-H, Wang A-J, Feng J-J, Huo T-T, Dong W-J (2012) Facile synthesis of ultra-long Cu microdendrites for the electrochemical detection of glucose. J Solid State Electrochem 16(4):1313–1321CrossRefGoogle Scholar
  52. 52.
    Mallesha M, Manjunatha R, Suresh GS, Melo JS, D’Souza SF, Venkatesha TV (2012) Direct electrochemical non-enzymatic assay of glucose using functionalized graphene. J Solid State Electrochem 16(8):2675–2681CrossRefGoogle Scholar
  53. 53.
    Narayanan JS, Anjalidevi C, Dharuman V (2013) Nonenzymatic glucose sensing at ruthenium dioxide-poly(vinyl chloride)-nafion composite electrode. J Solid State Electrochem 17(4):937–947CrossRefGoogle Scholar
  54. 54.
    Wolfart F, Maciel A, Nagata N, Vidotti M (2013) Electrocatalytical properties presented by Cu/Ni alloy modified electrodes toward the oxidation of glucose. J Solid State Electrochem 17(5):1333–1338CrossRefGoogle Scholar
  55. 55.
    Yi W, Yang D, Chen H, Liu P, Tan J, Li H (2014) A highly sensitive nonenzymatic glucose sensor based on nickel oxide-carbon nanotube hybrid nanobelts. J Solid State Electrochem 18(4):899–908CrossRefGoogle Scholar
  56. 56.
    El-Refaei SM, Saleh MM, Awad MI (2014) Tolerance of glucose electrocatalytic oxidation on NiO x /MnO x /GC electrode to poisoning by halides. J Solid State Electrochem 18(1):5–12CrossRefGoogle Scholar
  57. 57.
    Wang L, Tang Y, Wang L, Zhu H, Meng X, Chen Y, Sun Y, Yang XJ, Wan P (2015) Fast conversion of redox couple on Ni(OH)2/C nanocomposite electrode for high-performance nonenzymatic glucose sensor. J Solid State Electrochem 19(3):851–860CrossRefGoogle Scholar
  58. 58.
    Soomro RA, Ibupoto ZH, Sirajuddina Abro MI, Willander M (2015) Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures. J Solid State Electrochem 19(3):913–922CrossRefGoogle Scholar
  59. 59.
    Medeiros NG, Ribas VC, Lavayen V, Da Silva JA (2016) Synthesis of flower-like cuo hierarchical nanostructures as an electrochemical platform for glucose sensing. J Solid State Electrochem 20(9):2419–2426CrossRefGoogle Scholar
  60. 60.
    Yadav HM, Lee J-J (2019) One-pot synthesis of copper nanoparticles on glass: applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol. J Solid State Electrochem 23(2):503–512CrossRefGoogle Scholar
  61. 61.
    Xue XY, Xing LL, Chen YJ, Shi SL, Wang YG, Wang THJ (2008) Synthesis and H2S sensing properties of CuO-SnO2 core / shell PN-junction nanorods. J Phys Chem C112:12157–12160Google Scholar
  62. 62.
    Wang Q, Kong W, Yao J, Chang A (2019) Fabrication and electrical properties of the fast response Mn12 Co15 Ni03 O4 miniature NTC chip thermistors. Ceram Int 45(1):378–383CrossRefGoogle Scholar
  63. 63.
    Becerra-Fajardo L, Ivorra A (2019) First steps towards an implantable electromyography (EMG) sensor powered and controlled by galvanic coupling. IFMBE Proc 68(3):19–22CrossRefGoogle Scholar
  64. 64.
    Kochemirovsky VA, Menchikov LG, Safonov SV, Bal’makov MD, Tumkin II, Tver'yanovich YS (2011) Laser-induced chemical liquid phase deposition of metals: chemical reactions in solution and activation of dielectric surfaces. Russ Chem Rev 80(9):869–882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of ChemistrySaint-Petersburg UniversitySaint PetersburgRussian Federation

Personalised recommendations