Journal of Solid State Electrochemistry

, Volume 23, Issue 10, pp 2979–2988 | Cite as

Performance of Na0.44Mn1−xMxO2 (M = Ni, Mg; 0 ≤ x ≤ 0.44) as a cathode for rechargeable sodium ion batteries

  • Yu Shao
  • Yu-Ting Zhou
  • Miao-Miao Deng
  • Zhong-Feng Tang
  • Jia-Ying Liao
  • Henny J. M. Bouwmeester
  • Chun-Hua ChenEmail author
Original Paper


The influence of partial substitution of manganese by nickel or magnesium in Na0.44MnO2on cathode performance in sodium ion batteries has been investigated. Partial substitution changes the structure of parent Na0.44MnO2 from tunnel into layered P2-type, or a mixture of P2- and P3-type materials. Substitution smoothes the charge/discharge curves and may significantly improve capacity, albeit with a lower capacity retention relative to pristine Na0.44MnO2. In particular, high discharge capacities are found in the voltage range 2.0–4.2 V at 0.1 C rate for Na0.44Mn0.89Ni0.11O2 (193 mAh g−1) and Na0.44Mn0.89Mg0.11O2 (188 mAh g−1), with a capacity retention of 74% and 81%, respectively, after 70 cycles.


Sodium ion battery Cathode Na0.44MnO2 Substitution 


Funding information

This work was financially supported by the National Science Foundation of China (grant no. 51577175), the Hefei Center of Materials Science and Technology (grant no. 2014FXZY006), the Educational department of the Anhui Province (grant no. KJ2014ZD36), and by Elementec Co., Ltd. in Suzhou, China.

Supplementary material

10008_2019_4375_MOESM1_ESM.docx (8.6 mb)
ESM 1 (DOCX 8820 kb)


  1. 1.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Arya A, Sharma AL (2019) Electrolyte for energy storage/conversion (Li+, Na+, Mg2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 23:997–1059CrossRefGoogle Scholar
  3. 3.
    Xiao LN, Ding X, Tang ZF, He XD, Liao JY, Cui YH, Chen CH (2018) Layered LiNi0.80Co0.15Al0.05O2 as cathode material for hybrid Li+/Na+ batteries. J Solid State Electrochem 22:3431–3442CrossRefGoogle Scholar
  4. 4.
    Slater MD, Kim DH, Lee EJ, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRefGoogle Scholar
  5. 5.
    Pan HL, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRefGoogle Scholar
  6. 6.
    Palomares V, Cabanas MC, Martíınez EC, Han MH, Rojo T (2013) Update on Na-based battery materials. A growing research path. Energy Environ Sci 6:2312–2337CrossRefGoogle Scholar
  7. 7.
    Kulova TL, Kudryashova YO, Kuz’mina AA, Skundin AM, Stenina IA, Chekannikov AA, Yaroslavtsev AB, Libich J (2019) Study of degradation of Na2Тi3O7-based electrode during cycling. J Solid State Electrochem 23:455–463CrossRefGoogle Scholar
  8. 8.
    Zukalová M, Lásková BP, Mocek K, Zukal A, Bouša M, Kavan L (2018) Electrochemical performance of sol-gel-made Na2Ti3O7 anode material for Na-ion batteries. J Solid State Electrochem 22:2545–2552CrossRefGoogle Scholar
  9. 9.
    Galashev AY, Vorob’ev AS (2018) Physical properties of silicene electrodes for Li-, Na-, Mg-, and K-ion batteries. J Solid State Electrochem 22:3383–3391CrossRefGoogle Scholar
  10. 10.
    Wen MM, Liu XD, Zhao YM, Liu SH, Liu HT, Dong YZ, Kuang Q, Fan QH (2018) Synthesis of alluaudite-type Na2VFe2(PO4)3/C and its electrochemical performance as cathode material for sodium-ion battery. J Solid State Electrochem 22:891–898CrossRefGoogle Scholar
  11. 11.
    Clément RJ, Bruce PG, Grey CP (2015) Review—manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J Electrochem Soc 162:A2589–A2604CrossRefGoogle Scholar
  12. 12.
    Wu L, Hao Y, Shi S, Zhang X, Li H, Sui Y, Yang L, Zhong S (2017) Na3V2(PO4)3/C nanofiber bifunction as anode and cathode materials for sodium-ion batteries. J Solid State Electrochem 21:2985–2995CrossRefGoogle Scholar
  13. 13.
    Delmas C, Braconnier JJ, Fouassier C, Hagenmuller P (1981) Electrochemical intercalation of sodium NaxCoO2 bronzes. Solid State Ionics 3/4:165–169CrossRefGoogle Scholar
  14. 14.
    Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica 99B:81–85Google Scholar
  15. 15.
    Singh VK, Singh SK, Gupta H, Shalu BL, Tripathi AK, Verma YL, Singh RK (2018) Electrochemical investigations of Na0.7CoO2 cathode with peo-natfsi-bmimtfsi electrolyte as promising material for na-rechargeable battery. J Solid State Electrochem 22:1909–1919CrossRefGoogle Scholar
  16. 16.
    Bouwmeester HJM, Dekker EJP, Bronsema KD, Haange RJ, Wiegers GA (1982) Structures and phase-relations of compounds NaxTiS2 and NaxTiSe2. Rev Chim Mineral 19:333–342Google Scholar
  17. 17.
    Rouxel J (1976) Sur un diagramme ionicité-structure pour les composes intercalaire salcalins des sulfures lamellaires. J Solid State Chem 17:223–229CrossRefGoogle Scholar
  18. 18.
    Wang X, Tamaru M, Okubo M, Yamada A (2013) Electrode properties of P2–Na2/3MnyCo1–yO2 as positive electrode materials for sodium-ion batteries. J Phys Chem C 117:15545–15551CrossRefGoogle Scholar
  19. 19.
    Sauvage F, Laffont L, Tarascon JM, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294CrossRefPubMedGoogle Scholar
  20. 20.
    Kim H, Kim DJ, Seo DH, Yeom MS, Kang K, Kim DK, Jung Y (2012) Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem Mater 24:1205–1211CrossRefGoogle Scholar
  21. 21.
    Wang Y, Liu J, Lee B, Qiao R, Yang Z, Xu S, Yu X, Gu L, Hu YS, Yang W, Kang K, Li H, Yang XQ, Chen L, Huang X (2015) Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat Commun 6:6401–6411CrossRefPubMedGoogle Scholar
  22. 22.
    Dai Z, Mani U, Tan HT, Yan Q (2017) Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods 1:1700098CrossRefGoogle Scholar
  23. 23.
    Clément RJ, Billaud J, Armstrong AR, Singh G, Rojo T, Bruce PG, Grey CP (2016) Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical NMR and diffraction studies. Energy Environ Sci 9:3240–3251CrossRefGoogle Scholar
  24. 24.
    Zhou YT, Sun X, Zou BK, Liao JY, Wen ZY, Chen CH (2016) Cobalt-substituted Na0.44Mn1-xCoxO2: phase evolution and a high capacity positive electrode for sodium-ion batteries. Electrochim Acta 213:496–503CrossRefGoogle Scholar
  25. 25.
    Zhao L, Ni J, Wang H, Gao L (2013) Flux synthesis of Na0.44MnO2 nanoribbons and their electrochemical properties for Na-ion batteries. Funct Mater Lett 6:1350012–1135001CrossRefGoogle Scholar
  26. 26.
    Wang PF, Yao HR, Liu XY, Zhang JN, Gu L, Yu XQ, Yin YX, Guo YG (2017) Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3−P3 phase transition for high-performance sodium-ion batteries. Adv Mater 29:1700210CrossRefGoogle Scholar
  27. 27.
    Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517CrossRefPubMedGoogle Scholar
  28. 28.
    Billaud J, Singh G, Armstrong AR, Gonzalo E, Roddatis V, Armand M, Rojo T, Bruce PG (2014) Na0.67Mn1-xMgxO2 (0≤x≤0.2): a high capacity cathode for sodium-ion batteries. Energy Environ Sci 7:1387–1391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu Shao
    • 1
  • Yu-Ting Zhou
    • 1
  • Miao-Miao Deng
    • 1
  • Zhong-Feng Tang
    • 1
  • Jia-Ying Liao
    • 1
  • Henny J. M. Bouwmeester
    • 1
    • 2
  • Chun-Hua Chen
    • 1
    Email author
  1. 1.CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Electrochemistry Research Group, Membrane Science and Technology, Department of Science and Technology, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeNetherlands

Personalised recommendations