Advertisement

Shape evolution and effect of organic additives in the electrosynthesis of Cu nanostructures

  • Francesca PagnanelliEmail author
Original Paper
  • 9 Downloads

Abstract

Copper nanostructures were electrodeposited onto FTO in potentiostatic conditions at acidic pH without and with organic additives with different charge and structure: two cationic surfactants (hexadecyl trimethyl ammonium bromide and substituted deoxycholic acid), two anionic ones (sodium dodecyl benzene sulfonate and sodium dioctyl sulfosuccinate) and two neutral ones (saponin and deoxycholic acid). Shape evolution (assessed by image analyses of SEM micrographs) was determined for different copper concentrations (0.001–0.1 M) and discharged charge (Q = 0.001–0.1 C) without additives. A common scheme was observed: sphere-like particles were observed firstly, then evolving towards branched structures, which undergo a gradual branch enlargement finally giving aggregate-like structures.

As for the effect of organics, negatively charged additives promoted nucleation rather than growth of nanoparticles, while positively charged additives enhanced growth of copper structures rather than new nucleation.

Graphical abstract

Keywords

Electrosynthesis Cu nanostructures Organic additives Acidic sulphate bath FTO 

Notes

Acknowledgements

The author thanks Prof. Luciano Galantini of the Department of Chemistry of Sapienza University for the biliar acids kindly furnished and used for the tests.

Supplementary material

10008_2019_4360_MOESM1_ESM.doc (5.1 mb)
ESM 1 (DOC 5210 kb)

References

  1. 1.
    Ustarroz J, Hubin A, Terryn H (2016) Handbook of nanoparticles. Springer International Publishing, SwitzerlandGoogle Scholar
  2. 2.
    Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth. Willey-VHC, WeinheimCrossRefGoogle Scholar
  3. 3.
    Ustarroz J, Hammons JA, Altantzis T, Hubin A, Bals S, Terryn H (2013) A generalized electrochemical aggregative growth mechanism. J Am Chem Soc 135(31):11550–11561CrossRefGoogle Scholar
  4. 4.
    Altimari P, Pagnanelli F (2016) Electrochemical nucleation and three-dimensional growth of metal nanoparticles under mixed kinetic-diffusion control: model development and validation. Electrochim Acta 206:119–126CrossRefGoogle Scholar
  5. 5.
    Pagnanelli F, Schiavi PG, Bellagamba M, Moscardini E, Granata G, Toro L (2015) Pulsed electrodeposition of cobalt nanoparticles on copper substrate: quantitative assessment of the effects of the operating parameters. Electrochim Acta 155:228–235CrossRefGoogle Scholar
  6. 6.
    Doménech-Carbó A, Galian RE, Aguilera-Sigalat J, Perez-Prieto J (2016) Handbook of nanoparticles. Springer International Publishing, SwitzerlandGoogle Scholar
  7. 7.
    Taleb A, Xue Y, Dubot P (2013) Self organized gold nanoparticles as new nanoelectrocatalyst templates for surface nanostructuring. J Electroanal Chem 693:60–66CrossRefGoogle Scholar
  8. 8.
    Guadagnini L, Ballarin B, Tonelli D (2013) Dendritic silver nanostructures obtained via one-step electrosynthesis: effect of nonanesulfonic acid and polyvinylpyrrolidone as additives on the analytical performance for hydrogen peroxide sensing. J Nanopart Res 15(10):1971CrossRefGoogle Scholar
  9. 9.
    Jeyasubramanian K, Gokul Raja TS, Purushothaman S, Kumar MV, Sushmitha I (2017) Supercapacitive performances of MnO2 nanostructures grown on hierarchical Cu nano leaves via electrodeposition. Electrochim Acta 227:401–409CrossRefGoogle Scholar
  10. 10.
    Oniciu L, Muresan L (1991) Some fundamental aspects of levelling and brightening in metal electrodeposition. J Appl Electrochem 21(7):565–574CrossRefGoogle Scholar
  11. 11.
    Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Kluwer Academic Publishers, DordrechtGoogle Scholar
  12. 12.
    Bozzini B, D’Urzo L, Re M, De Riccardis F (2008) Electrodeposition of Cu from acidic sulphate solutions containing cetyltrimethylammonium bromide (CTAB). J Appl Electrochem 38(11):1561–1569CrossRefGoogle Scholar
  13. 13.
    Wan L, Wang Z, Yang Z, Luo W, Li Z, Zou Z (2010) Modulation of dendrite growth of cuprous oxide by electrodeposition. J Cryst Growth 312(21):3085–3090CrossRefGoogle Scholar
  14. 14.
    Mignani A, Ballarin B, Boanini E, Cassani MC (2014) Simple one step electrochemical preparation of copper nanostructures. Electrochim Acta 115:537–545CrossRefGoogle Scholar
  15. 15.
    Grujicic D, Pesic B (2002) Electrodeposition of copper: the nucleation mechanisms. Electrochim Acta 47(18):2901–2912CrossRefGoogle Scholar
  16. 16.
    Radisic A, Ross FM, Searson PC (2006) In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B 110(15):7862–7868CrossRefGoogle Scholar
  17. 17.
    Wei C, Wu G, Yang S, Liu Q (2016) Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation. Sci Rep 6:34779CrossRefGoogle Scholar
  18. 18.
    Yang CJ, Lu FH (2013) Shape and size control of Cu nanoparticles by tailoring the surface morphologies of TiN-coated electrodes for biosensing applications. Langmuir 29(51):16025–16033CrossRefGoogle Scholar
  19. 19.
    Bonou L, Eyraud M (2002) Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements. Electrochim Acta 47(26):4139–4148CrossRefGoogle Scholar
  20. 20.
    Pasquale MA, Gassa LM, Arvia AJ (2008) Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives. Electrochim Acta 53(20):5891–5904CrossRefGoogle Scholar
  21. 21.
    Portela AL, Teijelo ML, Lacconi GI (2006) Mechanism of copper electrodeposition in the presence of picolinic acid. Electrochim Acta 51(16):3261–3268CrossRefGoogle Scholar
  22. 22.
    Bozzini B, D’Urzo L, Mele C (2007) A novel polymeric leveller for the electrodeposition of copper from acidic sulphate bath: a spectroelectrochemical investigation. Electrochim Acta 52(14):4767–4777CrossRefGoogle Scholar
  23. 23.
    Muresan L, Varvara S (2000) The effect of some organic additives upon copper electrowinning from sulphate electrolytes. Hydrometallurgy 54(2-3):161–169CrossRefGoogle Scholar
  24. 24.
    Mandke MV, Pathan HM (2012) Electrochemical growth of copper nanoparticles: Structural and optical properties. J Electroanal Chem 686:19–24CrossRefGoogle Scholar
  25. 25.
    Abouzeid FM (2015) Influence of vitamin C on copper electrorefining from acidic solution of copper sulfate. Asian J Chem 27(12):4337–4343CrossRefGoogle Scholar
  26. 26.
    Raja M, Subha J, Ali FB, Ryu SH (2008) Synthesis of copper nanoparticles by electroreduction process. Mater Manuf Process 23(8):782–785CrossRefGoogle Scholar
  27. 27.
    Quinet M, Lallemand F, Ricq L, Hihu JY, Delobelle P, Arnould C, Mekhalif Z (2009) Influence of organic additives on the initial stages of copper electrodeposition on polycrystalline platinum. J Electrochim Acta 54(5):1529–1536CrossRefGoogle Scholar
  28. 28.
    Burke LD, O’Connell AM, Sharna R, Buckley CA (2006) Involvement of a metastable surface state in the electrocatalytic, electrodeposition and bath additive behaviour of copper in acid solution. J Appl Electrochem 36(8):919–929CrossRefGoogle Scholar
  29. 29.
    Vaduva CC, Vaszilcsin N, Kellenberger A (2011) Effect of aromatic amines on the diffusion layer thickness during the copper electrodeposition from acid bath. “Politehnica” Univ. (Timisoara) 56(70):75–80Google Scholar
  30. 30.
    Nikolic ND, Popov KI, Pavlovic LJ, Pavlovic MG (2007) Determination of critical conditions for the formation of electrodeposited copper structures suitable for electrodes in electrochemical devices. Sensors 7(1):1–15CrossRefGoogle Scholar
  31. 31.
    Dias Ribeiro B, Sales Alviano D, Weingart Barreto D, Zarur Coelho MA (2013) Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): critical micellar concentration, antioxidant and antimicrobial activities. Colloid Surf A 436:736–743CrossRefGoogle Scholar
  32. 32.
    Zhang L, Zhao C, Jiang Y, Wang Y, Yang W, Cheng T, Zhou G (2018) Effect of sodium dodecyl benzene sulfonate on morphology and structure of calcium silicate hydrate prepared via precipitation method. Colloid Surf A 540:249–255CrossRefGoogle Scholar
  33. 33.
    Ankitkumar IF, Eleftheria A, Paschalis A, Tsianou M (2015) Self-assembly of sodium bis(2-ethylhexyl) sulfosuccinate in aqueous solutions: modulation of micelle structure and interactions by cyclodextrins investigated by small-angle neutron scattering. J Mol Liq 210:125–135CrossRefGoogle Scholar
  34. 34.
    Zdziennicka A, Szymczyk K, Krawczyk J, Janczuk B (2012) Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilib 322–323:126–134CrossRefGoogle Scholar
  35. 35.
    Dong H, Wang Y, Tao F, Wang L (2012) Electrochemical fabrication of shape-controlled copper hierarchical structures assisted by surfactants. J Nanomater:901842Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistrySapienza University of RomeRomeItaly

Personalised recommendations