Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Phthalocyanine-aniline dyad constructed with click electrochemistry: a novel hybrid electrochromic material

  • 169 Accesses

Abstract

A novel hybrid electrochromic material, dyad of poly 4-azidoaniline (PANI-N3) and manganese phthalocyanine bearing terminal alkynyl moieties (TA-MnPc), was firstly prepared as an electrochromic anode (ITO/PANI-N3-TA-MnPc). ITO/PANI-N3-TA-MnPc was developed to improve the coloration efficiency, switching time, cycle live, and the viability of the phthalocyanine and aniline for the electrochromic applications. Click electrochemistry reaction (CEC) was employed for the binding of TA-MnPc to the electropolymerized PANI-N3 film on the ITO electrode. Characterization of the constructed electrode was performed with square wave voltammetry (SWV), infra-red spectroscopy (IR), scanning electron microscopy (SEM), and 4-probe conductometer, and then it was tested as a potential electrochromic material. PANI-N3-TA-MnPc hybrid chromophore provided extraordinary electrochromic responses with improved coloration efficiency, faster switching times, and long cycle live. Color change between green and brown with faster switching times (0.50 s) and longer cycle live (no optical lose with 300 CA cycles) made this hybrid material a possible building blocks for advanced electrochromic devices needing green-brown color change with high optical contrasts and faster response times.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Runnerstrom EL, Llordés A, Lounis SD, Milliron DJ (2014) Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun 50:10555–10572

  2. 2.

    Mortimer RJ, Rosseinsky DR, Monk PM (2015) Electrochromic materials and devices. Wiley

  3. 3.

    Monk PM, Rosseinsky DR, Mortimer RJ (2015) Electrochromic materials and devices based on viologens. In: Electrochromic materials and devices. Wiley-VCH Verlag GmbH & Co. KGaA, pp 57–90

  4. 4.

    Deb SK (2008) Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol Energy Mater Sol Cells 92(2):245–258

  5. 5.

    Deb S (1969) A novel electrophotographic system. Appl Opt 8(S1):192–195

  6. 6.

    Takagi S, Makuta S, Veamatahau A, Otsuka Y, Tachibana Y (2012) Organic/inorganic hybrid electrochromic devices based on photoelectrochemically formed polypyrrole/TiO 2 nanohybrid films. J Mater Chem 22:22181–22189

  7. 7.

    Fu X, Jia C, Wan Z, Weng X, Xie J, Deng L (2014) Hybrid electrochromic film based on polyaniline and TiO 2 nanorods array. Org Electron 15(11):2702–2709

  8. 8.

    Möller S, Forrest SR, Perlov C, Jackson W, Taussig C (2003) Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories. J Appl Phys 94(12):7811–7819

  9. 9.

    Xiong S, Phua SL, Dunn BS, Ma J, Lu X (2010) Covalently bonded polyaniline−TiO2 hybrids: a facile approach to highly stable anodic electrochromic materials with low oxidation potentials. Chem Mater 22(1):255–260

  10. 10.

    Dyer AL, Grenier CRG, Reynolds JR (2007) A poly(3,4-alkylenedioxythiophene) electrochromic variable optical attenuator with near-infrared reflectivity tuned independently of the visible region. Adv Funct Mater 17(9):1480–1486

  11. 11.

    Jensen J, Hösel M, Dyer AL, Krebs FC (2015) Development and manufacture of polymer-based electrochromic devices. Adv Funct Mater 25(14):2073–2090

  12. 12.

    Verghese MM, Ram MK, Vardhan H, Ashraf SM, Malhotra BD (1996) Polycarbazole-film-coated electrodes as electrochromic devices. Adv Mater Opt Electron 6(56):399–402

  13. 13.

    Wei H, Yan X, Li Y, Wu S, Wang A, Wei S, Guo Z (2012) Hybrid electrochromic fluorescent poly (DNTD)/CdSe@ ZnS composite films. J Phys Chem C 116(7):4500–4510

  14. 14.

    Kulesza PJ, Miecznikowski K, Chojak M, Malik MA, Zamponi S, Marassi R (2001) Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate. Electrochim Acta 46(28):4371–4378

  15. 15.

    Kim E, Jung S (2005) Layer-by-layer assembled electrochromic films for all-solid-state electrochromic devices. Chem Mater 17(25):6381–6387

  16. 16.

    Fei J, Lim KG, Palmore GTR (2008) Polymer composite with three electrochromic states. Chem Mater 20(12):3832–3839

  17. 17.

    Hu C-W, Lee K-M, Vittal R, Yang D-J, Ho K-C (2010) A high contrast hybrid electrochromic device containing PEDOT, heptyl viologen, and radical provider TEMPO. J Electro Chem Soc 157(7):P75–P78

  18. 18.

    Carbas BB, Önal AM (2012) New fluorene–xanthene-based hybrid electrochromic and fluorescent polymers via donor–acceptor approach. Electrochim Acta 66:38–44

  19. 19.

    Monk PS, Mortimer RJ, Rosseinsky DR (1996) Electrochromism: fundamentals and applications. J Am Chem Soc 118(43):10678–10678

  20. 20.

    Mortimer RJ, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications. Displays 27(1):2–18

  21. 21.

    Rodriguez-Mendez ML, de Saja JA (2009) Nanostructured thin films based on phthalocyanines: electrochromic displays and sensors. J Porphyrins Phthalocyanines 13(04n05):606–615

  22. 22.

    Somani PR, Radhakrishnan S (2003) Electrochromic materials and devices: present and future. ater. Chem Phys 77:117–133

  23. 23.

    Sen P, Dumludag F, Salih B, Ozkaya AR, Bekaroglu O (2011) Synthesis and electrochemical, electrochromic and electrical properties of novel s-triazine bridged trinuclear Zn(II), Cu(II) and Lu(III) and a tris double-decker Lu(III) phthalocyanines. Synth Met 161(13-14):1245–1254

  24. 24.

    Krier A, Parr T, Davidson K, Collins RA (1996) Red shift in optical absorption of erbium and dysprosium diphthalocyanine thin films on exposure to chlorine. Adv Mater Opt Electron 6(4):203–209

  25. 25.

    Arican D, Erdogmus A, Koca A (2014) Electrochromism of the Langmuir-Blodgett films based on monophthalocyanines carrying redox active metal centers. Thin Solid Films 550:669–676

  26. 26.

    Jones R, Krier A, Davidson K (1997) Structure, electrical conductivity and electrochromism in thin films of substituted and unsubstituted lanthanide bisphthalocyanines. Thin Solid Films 298(1-2):228–236

  27. 27.

    Lukas B, Lovett DR, Silver J (1992) Electrochromism in mixed Langmuir-Blodgett-films containing rare-earth bisphthalocyanines. Thin Solid Films 210:213–215

  28. 28.

    Petty M, Lovett DR, Oconnor JM, Silver J (1989) Electrochromism in ytterbium bisphthalocyanine (stearic-acid or cadmium stearate) films deposited by the Langmuir-Blodgett technique. Thin Solid Films 179(1-2):387–395

  29. 29.

    Yildiz HK, Korkut SE, Koca A, Sener MK (2011) 3,4-Ethylenedioxythiophene substituted phthalocyanines. Synth Met 161(17-18):1946–1952

  30. 30.

    Demir F, Biyiklioglu Z, Koca A (2014) Electrochromism of electropolymerized metallophthalocyanines. J Electro Chem Soc 161(3):G1–G6

  31. 31.

    Aydemir M, Karaoğlu HRP, Koçak MB, Koca A (2015) Electropolymerization of octakis diethlyamino substituted metallophthalocyanines and their electrochromic characterization. J Electro Chem Soc 162(3):H170–H178

  32. 32.

    Karadağ S, Bozoğlu C, Kasım Şener M, Koca A (2014) Synthesis and electrochemical properties of a double-decker lutetium(III) phthalocyanine bearing electropolymerizable substituents on non-peripheral positions. Dyes Pigments 100:168–176

  33. 33.

    Arıcan D, Aktaş A, Kantekin H, Koca A (2014) Electrochromism of electropolymerized phthalocyanine-tetrahydroquinoline dyads. J Electro Chem Soc 161(10):H670–H676

  34. 34.

    Oztas B, Akyuz D, Koca A (2017) Immobilization of alkynyl functionalized manganese phthalocyanine via click electrochemistry for electrocatalytic oxygen evolution reaction. Phys Chem Chem Phys 19(38):26121–26131

  35. 35.

    İpek Y, Dincer H, Koca A (2014) Electrode modification based on “click electrochemistry” between terminal-alkynyl substituted cobalt phthalocyanine and 4-azidoaniline. Sensors Actuators B Chem 193:830–837

  36. 36.

    Akyüz D, Dinçer H, Özkaya AR, Koca A (2015) Electrocatalytic hydrogen evolution reaction with metallophthalocyanines modified with click electrochemistry. Int J Hydrog Energy 40(38):12973–12984

  37. 37.

    Demir F, Bıyıklıoğlu Z, Koca A (2014) Electrochromism of electropolymerized metallophthalocyanines. J Electrochem Soc 161(3):G1–G6

  38. 38.

    Karaoglu HRP, Koca A, Kocak MB (2013) The synthesis and electrochemistry of novel, symmetrical, octasubstituted phthalocyanines. Synth Met 182:1–8

  39. 39.

    Karadağ S, Bozoğlu C, Şener MK, Koca A (2013) Synthesis and electrochemical properties of a double-decker lutetium (III) phthalocyanine bearing electropolymerizable substituents on non-peripheral positions. Dyes Pigments 100:168–176

  40. 40.

    Çakır V, Demir F, Bıyıklıoğlu Z, Koca A, Kantekin H (2013) Synthesis, characterization, electrochemical and spectroelectrochemical properties of metal-free and metallophthalocyanines bearing electropolymerizable dimethylamine groups. Dyes Pigments 98(3):414–421

  41. 41.

    Aktas A, Acar I, Koca A, Biyiklioglu Z, Kantekin H (2013) Synthesis, characterization, electrochemical and spectroelectrochemical properties of peripherally tetra-substituted metal-free and metallophthalocyanines. Dyes Pigments 99(3):613–619

  42. 42.

    Akyüz D, Koca A (2019) An electrochemical sensor for the detection of pesticides based on the hybrid of manganese phthalocyanine and polyaniline. Sensors Actuators B Chem 283:848–856

  43. 43.

    Akyüz D, Koca A (2018) Construction of Modified Electrodes with click electrochemistry based on the hybrid of 4-Azidoaniline and manganese phthalocyanine and electro chemistry pesticide sensor applications. J Electro Chem Soc 165(11):B508–B514

  44. 44.

    Dhandayuthapani T, Sivakumar R, Ilangovan R, Gopalakrishnan C, Sanjeeviraja C, Sivanantharaja A (2017) High coloration efficiency, high reversibility and fast switching response of nebulized spray deposited anatase TiO2 thin films for electrochromic applications. Electrochim Acta 255:358–368

  45. 45.

    Zhang J, J-p T, G-h D, Dong Z-m, Wu Y-s, Chang L, Xie D, G-f C, Wang X-l (2013) Ultra-thin WO3 nanorod embedded polyaniline composite thin film: synthesis and electrochromic characteristics. Sol Energy Mater Sol Cells 114:31–37

  46. 46.

    Zhang J, J-p T, Zhang D, Y-q Q, X-h X, Wang X-l, C-d G (2011) Multicolor electrochromic polyaniline–WO3 hybrid thin films: one-pot molecular assembling synthesis. J Mater Chem 21(43):17316–17324

  47. 47.

    Li H, Guarr TF (1991) Reversible electrochromism in polymeric metal phthalocyanine thin films. J Electroanal Chem Interfacial Electrochem 297(1):169–183

  48. 48.

    Solis C, Baigorria E, Milanesio ME, Morales G, Durantini EN, Otero L, Gervaldo M (2016) Electrochemical polymerization of EDOT modified phthalocyanines and their applications as electrochromic materials with green coloration, and strong absorption in the Near-IR. Electrochim Acta 213:594–605

Download references

Funding

This work is supported by Turkish Academy of Sciences (TUBA).

Author information

Correspondence to Atıf Koca.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to the memory of Ivo Alexandre Hümmelgen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akyüz, D., Koca, A. Phthalocyanine-aniline dyad constructed with click electrochemistry: a novel hybrid electrochromic material. J Solid State Electrochem 24, 431–440 (2020). https://doi.org/10.1007/s10008-019-04345-y

Download citation

Keywords

  • Electrochromic polymers/materials
  • Click electrochemistry
  • 4-Azidoaniline
  • Manganese phthalocyanine
  • Hybrid materials