Journal of Solid State Electrochemistry

, Volume 23, Issue 7, pp 2243–2250 | Cite as

Effects of vanadium oxide coating on the performance of LiFePO4/C cathode for lithium-ion batteries

  • Yong Tao
  • Yanbing CaoEmail author
  • Guorong Hu
  • Pengwei Chen
  • Zhongdong Peng
  • Ke Du
  • Ming Jia
  • Yong Huang
  • Jin Xia
  • Luyu Li
  • Xiaoming Xie
Original Paper


LiFePO4 cathode material is considered as prospective materials for lithium-ion batteries and attracted great interest because of excellent cyclic performance and environmentally friendliness. However, LiFePO4 material suffers from inferior electronic and Li+ conductivity, which restricts its performance at high rate. Improving the interfacial stability and the interfacial charge transfer of the electrode is a necessary method to enhance the cycle and rate capability. Herein, vanadium oxide decoration on LiFePO4/C composites was obtained via a simple wet chemical method. The results show that a moderate amount of vanadium oxide hybrid stabilizes the structure of the matrix LiFePO4 material. Vanadium oxide and the residual carbon coating construct a mixed conductive network, which optimizes the interface structure and reaction dynamics of the electrode. In addition, the charge transfer resistance of the decorated hybrid is smaller and the Li+ diffusion ability is better than pristine LiFePO4/C material. Moreover, the electrochemical performance exhibits a promising high rate capability and perfect cycle ability, showing the discharge specific capacities of 157.2, 150.6, and 131.1 mAh g−1 at 0.1 C, 1 C, and 3 C respectively. Furthermore, the capacity retention reached 90.9% after the 1000th cycle at 3 C.


Lithium-ion battery LiFePO4 cathode Vanadium oxide  Surface modification Enhanced electrochemical performance 


Funding information

This study was supported by the Nature Science Foundation of China (Grant No. 51602352, 51774343).


  1. 1.
    Huang KP, Fey TK, Lin YC, Wu PJ, Chang JK, Kao HM (2017) Magnetic impurity effects on self-discharge capacity, cycle performance, and rate capability of LiFePO4/C composites. J Solid State Electrochem 21(6):1767–1775CrossRefGoogle Scholar
  2. 2.
    Cai G, Fung KY, Ng KM, Chu KL, Hui K, Xue L (2016) Critical assessment of particle quality of commercial LiFePO4 cathode material using coin cells—a causal table for lithium-ion battery performance. J Solid State Electrochem 20(2):379–387CrossRefGoogle Scholar
  3. 3.
    Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 4(10):A170–A172CrossRefGoogle Scholar
  4. 4.
    Padhi AK, Goodenough JB, Nanjundaswamy KS (1997) Phoshho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  5. 5.
    Zhang WJ (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196(6):2962–2970CrossRefGoogle Scholar
  6. 6.
    Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1(2):123–128PubMedCrossRefGoogle Scholar
  7. 7.
    Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1):45–51CrossRefGoogle Scholar
  8. 8.
    Yuan L, Wang Z, Zhang W, Hu X, Chen J, Huang Y, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284CrossRefGoogle Scholar
  9. 9.
    Mathew V, Gim J, Kim E, Alfaruqi MH, Song J, Ahn D, Im WB, Paik Y, Kim J (2014) A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries. J Solid State Electrochem 18(6):1557–1567CrossRefGoogle Scholar
  10. 10.
    Fang X, Jing L, Huang K, Liu S, Huang C, Zhuang S, Zhang J (2012) Synthesis and electrochemical properties of K-doped LiFePO4/C composite as cathode material for lithium-ion batteries. J Solid State Electrochem 16(2):767–773CrossRefGoogle Scholar
  11. 11.
    Zhang LL, Liang G, Ignatov A, Croft MC, Peng YL (2011) Effect of vanadium incorporation on electrochemical performance of LiFePO4 for lithium-ion batteries. J Phys Chem C 115(27):13520–13527CrossRefGoogle Scholar
  12. 12.
    Fey TK, Lu TL, Wu FY, Li WH (2008) Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries. J Solid State Electrochem 12(7–8):825–833Google Scholar
  13. 13.
    Wei L, Ying J, Wan C, Jiang C, Jian G, Tang C (2007) Preparation and characterization of LiFePO4 from NH4FePO4·H2O under different microwave heating conditions. J Solid State Electrochem 11(6):799–803CrossRefGoogle Scholar
  14. 14.
    Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid-State Lett 5(3):A47–A50CrossRefGoogle Scholar
  15. 15.
    Eftekhari A (2004) Electrochemical deposition and modification of LiFePO4 for the preparation of cathode with enhanced battery performance. J Electrochem Soc 151(11):A1816–A1819CrossRefGoogle Scholar
  16. 16.
    Bian D, Sun Y, Li S, Tian Y, Yang Z, Fan X, Zhang W (2016) A novel process to recycle spent LiFePO4 for synthesizing LiFePO4 /C hierarchical microflowers. Electrochim Acta 190:134–140CrossRefGoogle Scholar
  17. 17.
    Yan X, Yang G, Liu J, Ge Y, Xie H, Pan X, Wang R (2009) An effective and simple way to synthesize LiFePO4/C composite. Electrochim Acta 54(24):5770–5774CrossRefGoogle Scholar
  18. 18.
    Yu F, Zhang J, Yang Y, Song G (2009) Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method. J Power Sources 189(1):794–797CrossRefGoogle Scholar
  19. 19.
    Kadoma Y, Kim JM, Abiko K, Ohtsuki K, Ui K, Kumagai N (2010) Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochim Acta 55(3):1034–1041CrossRefGoogle Scholar
  20. 20.
    Takahashi M, Tobishima SI, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148(3):283–289CrossRefGoogle Scholar
  21. 21.
    Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229CrossRefGoogle Scholar
  22. 22.
    Julien CM, Mauger A, Zaghib K (2011) Surface effects on electrochemical properties of nano-sized LiFePO4. J Mater Chem 21(27):9955–9968CrossRefGoogle Scholar
  23. 23.
    Meethong N, Huang HYS, Carter CW, Chiang YM (2007) Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4. Electrochem Solid-State Lett 10(5):A134–A138CrossRefGoogle Scholar
  24. 24.
    Hu GR, Gao XG, Peng ZD, Du K, Tan XY, Liu YJ (2007) Influence of Ti (superscript 4+) doping on electrochemical properties of LiFePO4/C cathode material for lithium-ion batteries. Trans Nonferrous Metals Soc China 17(2):296–300CrossRefGoogle Scholar
  25. 25.
    Shu H, Wang X, Wu Q, Hu B, Yang X, Wei Q, Liang Q, Bai Y, Zhou M, Wu C (2013) Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. J Power Sources 237(3):149–155CrossRefGoogle Scholar
  26. 26.
    Fey GTK, Yan CJ, Lin YC, Huang KP, Cho YD, Wu PJ, Sun YS, Kao HM (2012) Calcium doping effects on the electrochemical properties of LiFePO4/C cathode materials for lithium-ion batteries. Adv Mater Res 560-561:499–505CrossRefGoogle Scholar
  27. 27.
    Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J Power Sources 193(2):841–845CrossRefGoogle Scholar
  28. 28.
    Zhang D, Cai R, Zhou Y, Shao Z, Liao XZ, Ma ZF (2010) Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment. Electrochim Acta 55(8):2653–2661CrossRefGoogle Scholar
  29. 29.
    Yu F, Zhang J, Yang Y, Song G (2009) Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method. Electrochim Acta 54(28):7389–7395CrossRefGoogle Scholar
  30. 30.
    Wang K, Cai R, Yuan T, Yu X, Ran R, Shao Z (2009) Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochim Acta 54(10):2861–2868CrossRefGoogle Scholar
  31. 31.
    Bing H, Zheng X, Jia D, Mi L (2010) Design and synthesis of high-rate micron-sized, spherical LiFePO4/C composites containing clusters of nano/microspheres. Electrochim Acta 55(3):1227–1231CrossRefGoogle Scholar
  32. 32.
    Qian J, Zhou M, Cao Y, Ai X, Yang H (2010) Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. Jphyschemc 114(8):3477–3482Google Scholar
  33. 33.
    Wang Y, Wang J, Yang J, Nuli Y (2006) High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H2O. Adv Funct Mater 16(16):2135–2140CrossRefGoogle Scholar
  34. 34.
    Yang ST, Zhao NH, Dong HY, Yang JX, Yue HY (2006) Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon. Electrochim Acta 51(1):166–171CrossRefGoogle Scholar
  35. 35.
    Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. In: EGU General Assembly Conference. pp 139–146Google Scholar
  36. 36.
    Nagpure SC, Bhushan B, Babu SS (2012) Raman and NMR studies of aged LiFePO4 cathode. Appl Surf Sci 259(3):49–54CrossRefGoogle Scholar
  37. 37.
    Köhler J, Makihara H, Uegaito H, Inoue H, Toki M (2000) LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery system. Electrochim Acta 46(1):59–65CrossRefGoogle Scholar
  38. 38.
    Tsang C, Manthiram A (1997) Synthesis of nanocrystalline VO2 and its electrochemical behavior in lithium batteries. J Electrochem Soc 144(2):520–524CrossRefGoogle Scholar
  39. 39.
    Kannan AM, Manthiram A (2003) Synthesis and electrochemical evaluation of high capacity nanostructured VO2 cathodes. Solid State Ionics 159(3):265–271CrossRefGoogle Scholar
  40. 40.
    Niu C, Meng J, Han C, Zhao K, Yan M, Mai L (2014) VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett 14(5):2873–2878PubMedCrossRefGoogle Scholar
  41. 41.
    Yu L, Liu Q, Wang H (2009) Synthesis of LiFePO4-C cathode materials using a green and low-cost method. Ionics 15(6):689–692CrossRefGoogle Scholar
  42. 42.
    Wu XL, Guo YG, Su J, Xiong JW, Zhang YL, Wan LJ (2013) Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv Energy Mater 3(9):1155–1160CrossRefGoogle Scholar
  43. 43.
    Hu G, Chen P, Cao Y, Peng Z, Ke D, Zhang Z (2017) Enhanced electrochemical performance of LiFePO4 cathode with synergistic modification of Na3V2(PO4 )3 and carbon network. Solid State Ionics 301:138–145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yong Tao
    • 1
  • Yanbing Cao
    • 1
    Email author
  • Guorong Hu
    • 1
  • Pengwei Chen
    • 2
  • Zhongdong Peng
    • 1
  • Ke Du
    • 1
  • Ming Jia
    • 1
  • Yong Huang
    • 1
  • Jin Xia
    • 1
  • Luyu Li
    • 1
  • Xiaoming Xie
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Amperex Technology LimitedNingdeChina

Personalised recommendations