Advertisement

Improvement of the photoelectrochemical performance of vertically aligned WO3 nanosheet array film with a disordered surface layer by electroreduction

  • Liu-Dan Zhao
  • Qian Zhang
  • Jin-Bin Fan
  • Li-Qiang Yin
  • Peng-Wei Qi
  • Hong-Chang YaoEmail author
  • Zhong-Jun LiEmail author
Original Paper
  • 30 Downloads

Abstract

The search for efficient and powerful photoanode materials remains one of the toughest challenges in photoelectrochemical (PEC) water splitting because the oxygen evolution reaction on the photoanode is a rate-limiting process. On the other hand, the semiconductor/liquid interface is a key factor governing the water splitting efficiency due to its influence on charge separation and collection. Herein, we synthesized vertically aligned WO3 nanosheet array (NS) films on fluorine-doped tin oxide (FTO), and followed by electroreduction for tuning the surface structure of WO3 NSs. A disordered layer is formed on the surface of WO3 NSs by controlling the external bias voltage and reduction time of electroreduction, and its thickness of the disordered layer varies with reduction time. The optimal WO3 NSs with a 1.2 nm disorder layer thickness exhibit a remarkable photocurrent density of 1.07 mA cm−2 at 1.23 V vs reversible hydrogen electrode (RHE) under AM 1.5G illumination, which is 1.43 times of pristine WO3 NSs. The results indicate that the electroreduction voltage and reduction time exert great influence on the formation of the surface disordered layer, and the optimized reduction conditions can enhance charge transfer and charge separation efficiency, substantially improving the PEC performance of WO3 photoanode.

Keywords

Photoelectrochemical water splitting Electroreduction WO3 nanosheets arrays Disordered layer 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Nos. 21471133 and 21671176) and National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 201810459001).

Supplementary material

10008_2019_4257_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2142 kb)

References

  1. 1.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473CrossRefGoogle Scholar
  2. 2.
    Ahmad H, Kamarudin SK, Minggu LJ, Kassim M (2015) Hydrogen from photocatalytic water splitting process: a review. Renew Sust Energ Rev 43:599–610CrossRefGoogle Scholar
  3. 3.
    Wang G, Ling Y, Wang H, Lu X, Li Y (2014) Chemically modified nanostructures for photoelectrochemical water splitting. J Photochem Photobiol C 19:35–51CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  5. 5.
    Tang J, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130(42):13885–13891CrossRefGoogle Scholar
  6. 6.
    Park Y, McDonald KJ, Choi K-S (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidationw. Chem Soc Rev 42(6):2321–2337CrossRefGoogle Scholar
  7. 7.
    Huang ZF, Pan L, Zou J-J, Zhang X, Wang L (2014) Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale 6(23):14044–14063CrossRefGoogle Scholar
  8. 8.
    Tamirat AG, Rack J, Dubale AA, Su W-N, Hwang B-J (2016) Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz 1(4):243–267CrossRefGoogle Scholar
  9. 9.
    Lin Y, Yuan G, Sheehan S, Zhou S, Wang D (2011) Hematite-based solar water splitting: challenges and opportunities. Energy Environ Sci 4(12):4862–4869CrossRefGoogle Scholar
  10. 10.
    Zhu T, Chong MN, Chan ES (2014) Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. ChemSusChem 7(11):2974–2997CrossRefGoogle Scholar
  11. 11.
    Liu X, Wang F, Wang Q (2012) Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys Chem Chem Phys 14(22):7894–7911CrossRefGoogle Scholar
  12. 12.
    Li Z, Luo W, Zhang M, Feng J, Zou Z (2013) Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6(2):347–370CrossRefGoogle Scholar
  13. 13.
    Yang Y, Niu S, Han D, Liu T, Wang G, Li Y (2017) Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv Energy Mater 7(19):1700555CrossRefGoogle Scholar
  14. 14.
    Lianos P (2017) Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Appl Catal B 210:235–254CrossRefGoogle Scholar
  15. 15.
    Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320CrossRefGoogle Scholar
  16. 16.
    Bignozzi CA, Caramori S, Cristino V, Argazzi R, Meda L, Tacca A (2013) Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Chem Soc Rev 42(6):2228–2246CrossRefGoogle Scholar
  17. 17.
    Gan J, Lu X, Tong Y (2014) Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 6(13):7142–7164CrossRefGoogle Scholar
  18. 18.
    Shi W, Zhang X, Brillet J, Huang D, Li M, Wang M (2016) Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon 105:387–393CrossRefGoogle Scholar
  19. 19.
    Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D (2011) Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem Phys Lett 507(4-6):209–215CrossRefGoogle Scholar
  20. 20.
    Su J, Feng X, Sloppy JD, Guo L, Grimes CA (2011) Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11(1):203–208CrossRefGoogle Scholar
  21. 21.
    Li W, Da P, Zhang Y, Wang Y, Lin X, Gong X, Zheng G (2014) WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano 8(11):11770–11777CrossRefGoogle Scholar
  22. 22.
    Kalanur SS, Hwang YJ, Chae SY, Joo OS (2013) Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J Mater Chem A 1(10):3479–3488CrossRefGoogle Scholar
  23. 23.
    Waller MR, Townsend TK, Zhao J, Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Single-crystal tungsten oxide nanosheets: photochemical water oxidation in the quantum confinement regime. Chem Mater 24(4):698–704CrossRefGoogle Scholar
  24. 24.
    Chen X, Ye J, Ouyang S, Kako T, Li Z, Zou Z (2011) Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 5(6):4310–4318CrossRefGoogle Scholar
  25. 25.
    Zhang T, Su J, Guo L (2016) Hierarchical architecture of WO3 nanosheets by self-assembly of nanorods for photoelectrochemical applications. CrystEngComm 18(5):665–669CrossRefGoogle Scholar
  26. 26.
    Amano F, Li D, Ohtani B (2010) Fabrication and photoelectrochemical property of tungsten(VI) oxide films with a flake-wall structure. Chem Commun 47:2769–2771CrossRefGoogle Scholar
  27. 27.
    Qin D-D, Tao C-L, Friesen SA, Wang T-H, Varghese OK, Bao N-Z, Yang Z-Y, Mallouk TE, Grimes CA (2012) Dense layers of vertically oriented WO3 crystals as anodes for photoelectrochemical water oxidation. Chem Commun 48(5):729–731CrossRefGoogle Scholar
  28. 28.
    Yang J, Li W, Li J, Sun D, Chen Q (2012) Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. J Mater Chem 22(34):17744–17752CrossRefGoogle Scholar
  29. 29.
    Wang G, Yang Y, Ling Y, Wang H, Lu X, Pu Y-C, Zhang JZ, Tong Y, Li Y (2016) An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. J Mater Chem A 4(8):2849–2855CrossRefGoogle Scholar
  30. 30.
    Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH (2016) Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed 55(39):11819–11823CrossRefGoogle Scholar
  31. 31.
    Gu Z, Zhang L, Wen B, An X, Lan H, Liu L-M, Chen T, Zhang J, Cao X, Tang J, Liu H, Qu J (2018) Efficient design principle for interfacial charge separation in hydrogen-intercalated nonstoichiometric oxides. Nano Energy 53:887–897CrossRefGoogle Scholar
  32. 32.
    Wang L, Tsang CS, Liu W, Zhang X, Zhang K, Ha E, Kwok W-M, Park J-H, Lee LYS, Wong K-Y (2019) Disordered layers on WO3 nanoparticles enable photochemical generation of hydrogen from water. J Mater Chem A 7(1):221–227CrossRefGoogle Scholar
  33. 33.
    Yan P, Liu G, Ding C, Han H, Shi J, Gan Y, Li C (2015) Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction. ACS Appl Mater Interfaces 7(6):3791–3796CrossRefGoogle Scholar
  34. 34.
    Lillard RS, Kanner GS, Butt DP (1998) The nature of oxide films on tungsten in acidic and alkaline solutions. J Electrochem Soc 145(8):2718–2725CrossRefGoogle Scholar
  35. 35.
    Pan K, Dong Y, Zhou W, Pan Q, Xie Y, Xie T, Tian G, Wang G (2013) Facile fabrication of hierarchical TiO2 nanobelt/ZnO nanorod heterogeneous nanostructure: an efficient photoanode for water splitting. ACS Appl Mater Interfaces 5(17):8314–8320CrossRefGoogle Scholar
  36. 36.
    Ahmed B, Kumar S, Ojha AK, Donfack P, Materny A (2017) Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material. Spectrochim Acta A 175:250–261CrossRefGoogle Scholar
  37. 37.
    Shen J-Y, Wang M-D, Wang Y-F, Hu J-Y, Zhu Y, Zhang YX, Li Z-J, Yao H-C (2018) Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor. Sensors Actuators B Chem 256:27–37CrossRefGoogle Scholar
  38. 38.
    Xiao T, Wang X-Y, Zhao Z-H, Li L, Zhang L, Yao H-C, Wang J-S, Li Z-J (2014) Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus. Sensors Actuators B Chem 199:210–219CrossRefGoogle Scholar
  39. 39.
    Shen J-Y, Zhang L, Ren J, Wang J-C, Yao H-C, Li Z-J (2017) Highly enhanced acetone sensing performance of porous C-doped WO3 hollow spheres by carbon spheres as templates. Sensors Actuators B Chem 239:597–607CrossRefGoogle Scholar
  40. 40.
    Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR (2002) Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J Am Chem Soc 125:475–482CrossRefGoogle Scholar
  41. 41.
    Li Y, Wang C, Zheng H, Wan F, Yu F, Zhang X, Liu Y (2017) Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect. Appl Surf Sci 391:654–661CrossRefGoogle Scholar
  42. 42.
    Liu Y, Li J, Li W, Yang Y, Li Y, Chen Q (2015) Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping. J Phys Chem C 119(27):14834–14842CrossRefGoogle Scholar
  43. 43.
    Singh T, Müller R, Singh J, Mathur S (2015) Tailoring surface states in WO3 photoanodes for efficient photoelectrochemical water splitting. Appl Surf Sci 347:448–453CrossRefGoogle Scholar
  44. 44.
    Liu G, Han J, Zhou X, Huang L, Zhang F, Wang X, Ding C, Zheng X, Han H, Li C (2013) Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen. J Catal 307:148–152CrossRefGoogle Scholar
  45. 45.
    Cardon F, Gome WP (1978) On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. J Phys D Appl Phys 11:63–67CrossRefGoogle Scholar
  46. 46.
    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033CrossRefGoogle Scholar
  47. 47.
    Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012) Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 134(9):4294–4302CrossRefGoogle Scholar
  48. 48.
    Zhou M, Bao J, Xu Y, Zhang J, Xie J, Guan M, Wang C, Wen L, Lei Y, Xie Y (2014) Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano 8(7):7088–7098CrossRefGoogle Scholar
  49. 49.
    Wang X, Liow C, Bisht A, Liu X, Sum TC, Chen X, Li S (2015) Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion. Adv Mater 27(13):2207–2214CrossRefGoogle Scholar
  50. 50.
    Wang X, Liow C, Qi D, Zhu B, Leow WR, Wang H, Xue C, Chen X, Li S (2014) Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. Adv Mater 26(21):3506–3512CrossRefGoogle Scholar
  51. 51.
    Li Y, Wei X, Yan X, Cai J, Zhou A, Yang M, Liu K (2016) Construction of inorganic–organic 2D/2D WO3/g-C3N4 nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater. Phys Chem Chem Phys 18(15):10255–10261CrossRefGoogle Scholar
  52. 52.
    Huang J, Zhang Y, Ding Y (2017) Rationally designed/constructed CoOx/WO3 anode for efficient photoelectrochemical water oxidation. ACS Catal 7(3):1841–1845CrossRefGoogle Scholar
  53. 53.
    Chae SY, Lee CS, Jung H, Joo OS, Min BK, Kim JH, Hwang YJ (2017) Insight into charge separation in WO3/BiVO4 heterojunction for solar water splitting. ACS Appl Mater Interfaces 9(23):19780–19790CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations