Advertisement

Vertically aligned tree-like carbon nanostructure as an electrode of the electrochemical capacitor

  • Monalisa GhoshEmail author
  • G. Mohan Rao
Original Paper
  • 25 Downloads

Abstract

The thin film of a vertically aligned tree-like carbon nanostructure is synthesised to study its performance as a novel electrode material of the electrochemical capacitor. The individual constituent nanostructures of the film are multiwalled carbon nanotubes aligned perpendicular to the substrate with carbon films attached to it like branches. This unique nanostructured carbon thin film has a regular geometrical arrangement with a very high surface area due to the distinctive structural morphology along with a good contact with the conducting substrate on which it is directly deposited. This makes the material an attractive candidate as the electrode of an electrochemical capacitor. The performance of this nanostructured material has been studied in a symmetric two-electrode configuration. The material has shown an electrochemical double-layer capacitance-type behaviour, the characteristic of carbon-based electrodes, along with a good cyclic retentivity. The material has shown a specific capacitance of 0.55 mF cm−2 (3.7 F cm−3) at a current density of 0.88 mA cm−2, while the aligned carbon nanotube films of similar thickness has exhibited a specific capacitance of 0.08 mF cm−2 (0.66 F cm−3) for the same current density.

Keywords

Electrochemical capacitors Carbon Tree-like nanostructure Vertical alignment ECR plasma 

Notes

Acknowledgements

A part of this research is performed using the Micro and Nano Characterisation Facilities (MNCF) at the Centre of Nanoscience and Engineering (CeNSE), Indian Institute of Science, Bangalore, India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41(2):797–828CrossRefGoogle Scholar
  2. 2.
    Inagaki M, Konno H, Tanaike O (2010) J Power Sources 195(24):7880–7903CrossRefGoogle Scholar
  3. 3.
    Chen T, Dai L (2013) Mater Today 16(7–8):272–280CrossRefGoogle Scholar
  4. 4.
    Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J, Wang Y, Liu J, Li J, Cao G (2012) Nano Energy 1(2):195–220CrossRefGoogle Scholar
  5. 5.
    Li X, We B (2013) Nano Energy 2(2):159–173CrossRefGoogle Scholar
  6. 6.
    Pan H, Li J, Feng YP (2010) Nanoscale Res Lett 5(3):654–668CrossRefGoogle Scholar
  7. 7.
    Li J, Cheng X, Shashurin A, Keidar M (2012) Graphene 1(01):1–13CrossRefGoogle Scholar
  8. 8.
    Seo DH, Yick S, Han Z, Fang JH, Ostrikov K (2014) ChemSusChem 7(8):2317–2324CrossRefGoogle Scholar
  9. 9.
    Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM (2006) Nat Nanotechnol 1(2):112–116CrossRefGoogle Scholar
  10. 10.
    Gao L, Peng A, Wang ZY, Zhang H, Shi Z, Gu Z, Cao G, Ding B (2008) Solid State Commun 146(9-10):380–383CrossRefGoogle Scholar
  11. 11.
    Lu W, Qu L, Henry K, Dai L (2009) J of Power Sources 189(2):1270–1277CrossRefGoogle Scholar
  12. 12.
    Lv P, Zhang P, Li F, Li Y, Feng Y, Feng W (2012) Synth Met 162(13-14):1090–1096CrossRefGoogle Scholar
  13. 13.
    Kim B, Chung H, Kim W (2012) Nanotechnology 23:155401 (8pages)CrossRefGoogle Scholar
  14. 14.
    Reit R, Nguyen J, Ready WJ (2013) Electrochim Acta 91:96–100CrossRefGoogle Scholar
  15. 15.
    Shah R, Zhang X, Talapatra S (2009) Nanotechnology 20(39):395202 (5pages)CrossRefGoogle Scholar
  16. 16.
    Hsia B, Marschewsk J, Wang S, In JB, Carraro C, Poulikakos D, Grigoropoulos CP, Maboudian R (2014) Nanotechnology 25:55401 (9pages)CrossRefGoogle Scholar
  17. 17.
    Dogru IB, Durukan MB, Turel O, Unalan HE (2016) Prog Nat Sci: Mater Int 26(3):232–236CrossRefGoogle Scholar
  18. 18.
    Zhu Q, Yuan X, Zhu Y, Ni J, Zhang X, Yang Z (2018) Nanotechnology 29:195405 (11pp)CrossRefGoogle Scholar
  19. 19.
    Pitkänen O, Järvinen T, Cheng H, Lorite GS, Dombovari1 A, Rieppo L, Talapatra S, Duong HM, Tóth G, Juhász KL, Kónya Z, Kukovecz A, Ajayan PM, Vajtai R, Kordás K (2017) Sci Rep 7(1):16594Google Scholar
  20. 20.
    Seman RNAR, Azam MA, Mohamad AA (2017) Renew Sust Energ Rev 75:644–659CrossRefGoogle Scholar
  21. 21.
    Malik R, Zhang L, McConnell C, Schott M, Hsieh Y, Noga R, Alvarez NT, Shanov V (2017) Carbon 116:579–590CrossRefGoogle Scholar
  22. 22.
    Al-Asadi AS, Henley LA, Wasala M, Muchharla B, Perea-Lopez N, Carozo V, Lin Z, Terrones M, Mondal K, Kordas K, Talapatra S (2017) J Appl Phys 121(12):124303CrossRefGoogle Scholar
  23. 23.
    Oguntoye M, Oak S, Pashazanusi L, Pratt L, Pesika NS (2017) Electrochim Acta 236:408–416CrossRefGoogle Scholar
  24. 24.
    Nonomura R, Itoh T, Sato Y, Yokoyama K, Yamamoto M, Nishida T, Motomiya K, Tohji K, Sato Y (2018) Carbon 132:539–547CrossRefGoogle Scholar
  25. 25.
    Wul G, Tan P, Wang D, Li Z, Peng L, Hu Y, Wang C, Zhu W, Chen S, Chen W (2017) Sci Rep 7:43676CrossRefGoogle Scholar
  26. 26.
    Zhou Q, Chang J, Jiang Y, Wei T, Sheng L, Fan Z (2017) Electrochim Acta 251:91–98CrossRefGoogle Scholar
  27. 27.
    Ghosh M, Rao GM (2018) Carbon 133:239–248CrossRefGoogle Scholar
  28. 28.
    Deenamma KV, Rao GM (2000) Rev Sci Instrum 71:467–472CrossRefGoogle Scholar
  29. 29.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technology applications. Plenum Publisher, New YorkCrossRefGoogle Scholar
  30. 30.
    Premathilake D, Outlaw RA, Parler SG, Butler SM, Miller JR (2017) Carbon 111:231–237CrossRefGoogle Scholar
  31. 31.
    Roy A, Ray A, Saha S, Ghosh M, Das T, Satpati B, Nandi M, Das S (2018) Electrochim Acta 283:327–337CrossRefGoogle Scholar
  32. 32.
    Ray A, Roy A, Ghosh M, Ramos-Ramón JA, Saha S, Pal U, Bhattacharya SK, Das S (2019) Appl Surf Sci 463:513–552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations