Advertisement

Gold nanorods and poly(amido amine) dendrimer thin film for biosensing

  • Laís RibovskiEmail author
  • Fabrício A. dos Santos
  • Valtencir Zucolotto
  • Bruno C. Janegitz
Original Paper
  • 36 Downloads

Abstract

The use of gold nanomaterials in electrochemical biosensing has been proven to be effective either by modifying the electrodes’ surface or by labeling molecules. The combination of dendrimers with gold nanomaterials is a worthwhile alternative to create a suitable environment to immobilize enzymes. In this paper, we report the development of a thin film composed of gold nanorods (AuNRs) and poly(amido amine) (PAMAM) dendrimer generation 4, which was applied for biosensing. The film was prepared by drop-casting the dispersion onto a screen-printed carbon electrode (SPCE), and tyrosinase (Tyr) enzyme was further immobilized onto the modified electrode. The direct electron transfer (DET) between the enzyme and electrode surface was verified through cyclic voltammetry (CV), yielding an apparent heterogeneous electron transfer rate constant of 0.045 s−1. Analytical curves were obtained by chronoamperometry for catechol (CAT) and dopamine (DA) with linear ranges from 2.8 to 30.3 μmol L−1 and 27.8 to 448.7 μmol L−1, respectively, and detection limits of 1.0 μmol L−1 for CAT and 10.0 μmol L−1 for DA. The improved electrochemical properties of AuNRs-PAMAM-modified SPCE combined with the effective enzyme immobilization led to a promising electrochemical device to detect phenolic compounds.

Keywords

Gold nanorods Tyrosinase biosensor Phenolic compounds Thin film 

Notes

Acknowledgments

We thank Dr. Valéria Spolon Marangoni for providing the gold nanorods and Dr. Henrique Antônio Mendonça Faria for the atomic force microscopy images obtained at the CNPEM, Campinas-SP, Brazil.

Funding information

We gratefully acknowledge the Brazilian funding agencies FAPESP (2015/19099-2) and CNPq (444150/2014-5). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Supplementary material

10008_2019_4247_MOESM1_ESM.docx (10.9 mb)
ESM 1 (DOCX 11190 kb)

References

  1. 1.
    Şenel M, Çevik E (2012) A novel amperometric hydrogen peroxide biosensor based on pyrrole-PAMAM dendrimer modified gold electrode. Curr Appl Phys 12(4):1158–1165CrossRefGoogle Scholar
  2. 2.
    Kavosi B, Salimi A, Hallaj R, Moradi F (2015) Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens Bioelectron 74:915–923CrossRefGoogle Scholar
  3. 3.
    Janegitz BC, Pauliukaite R, Ghica ME, Brett CMA, Fatibello O (2011) Direct electron transfer of glucose oxidase at glassy carbon electrode modified with functionalized carbon nanotubes within a dihexadecylphosphate film. Sensors Actuators B Chem 158(1):411–417CrossRefGoogle Scholar
  4. 4.
    Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036CrossRefGoogle Scholar
  5. 5.
    Xu Q, Gu SX, Jin LY, Zhou YE, Yang ZJ, Wang W, Hu XY (2014) Graphene/polyaniline/gold nanoparticles nanocomposite for the direct electron transfer of glucose oxidase and glucose biosensing. Sensors Actuators B Chem 190:562–569CrossRefGoogle Scholar
  6. 6.
    Brazaca LC, Ribovski L, Janegitz BC, Zucolotto V (2017) Nanostructured materials and nanoparticles for point of care (POC) medical biosensors. In: Narayan RJ (ed) Medical biosensors for point of care (POC) applications. Woodhead Publishing, Cambridge, pp 229–254CrossRefGoogle Scholar
  7. 7.
    Tang L, Zhou YY, Zeng GM, Li Z, Liu YY, Zhang Y, Chen GQ, Yang GD, Lei XX, Wu MS (2013) A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol. Analyst 138(12):3552–3560CrossRefGoogle Scholar
  8. 8.
    Campanhã Vicentini F, Garcia LLC, Figueiredo-Filho LCS, Janegitz BC, Fatibello-Filho O (2016) A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzym Microb Technol 84:17–23CrossRefGoogle Scholar
  9. 9.
    Villalonga R, Diez P, Casado S, Eguilaz M, Yanez-Sedeno P, Pingarron JM (2012) Electropolymerized network of polyamidoamine dendron-coated gold nanoparticles as novel nanostructured electrode surface for biosensor construction. Analyst 137(2):342–348CrossRefGoogle Scholar
  10. 10.
    Li XR, Ren TK, Wang N, Ji XP (2013) Gold nanoparticles-enhanced amperometric tyrosinase biosensor based on three-dimensional sol-gel film-modified gold electrodes. Anal Sci 29(4):473–477CrossRefGoogle Scholar
  11. 11.
    Xia N, Zhang LP, Feng QQ, Deng DH, Sun XL, Liu L (2013) Amplified voltammetric detection of tyrosinase and its activity with dopamine-gold nanoparticles as redox probes. Int J Electrochem Sci 8:5487–5495Google Scholar
  12. 12.
    Singh S, Jain DVS, Singla ML (2013) Sol-gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor. Sensors Actuators B Chem 182:161–169CrossRefGoogle Scholar
  13. 13.
    Crespilho FN, Emilia Ghica M, Florescu M, Nart FC, Oliveira ON, Brett CMA (2006) A strategy for enzyme immobilization on layer-by-layer dendrimer–gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem Commun 8(10):1665–1670CrossRefGoogle Scholar
  14. 14.
    Crespilho FN, Nart FC, Oliveira ON, Brett CMA (2007) Oxygen reduction and diffusion in electroactive nanostructured membranes (ENM) using a layer-by-layer dendrimer-gold nanoparticle approach. Electrochim Acta 52(14):4649–4653CrossRefGoogle Scholar
  15. 15.
    Serafin V, Agui L, Yanez-Sedeno P, Pingarron JM (2011) A novel hybrid platform for the preparation of disposable enzyme biosensors based on poly(3,4-ethylenedioxythiophene) electrodeposition in an ionic liquid medium onto gold nanoparticles-modified screen-printed electrodes. J Electroanal Chem 656(1-2):152–158CrossRefGoogle Scholar
  16. 16.
    Janegitz BC, Medeiros RA, Rocha RC, Fatibello O (2012) Direct electrochemistry of tyrosinase and biosensing for phenol based on gold nanoparticles electrodeposited on a boron-doped diamond electrode. Diam Relat Mater 25:128–133CrossRefGoogle Scholar
  17. 17.
    Crespilho FN, Zucolotto V, Brett CMA, Oliveira ON, Nart FC (2006) Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles. J Phys Chem B 110(35):17478–17483CrossRefGoogle Scholar
  18. 18.
    Zhang H, Hu N (2007) Conductive effect of gold nanoparticles encapsulated inside polyamidoamine (PAMAM) dendrimers on electrochemistry of myoglobin (Mb) in {PAMAM−Au/Mb}n layer-by-layer films. J Phys Chem B 111(35):10583–10590CrossRefGoogle Scholar
  19. 19.
    Marangoni VS, Cancino-Bernardi J, Zucolotto V (2016) Synthesis, physico-chemical properties, and biomedical applications of gold nanorods—a review. J Biomed Nanotechnol 12(6):1136–1158CrossRefGoogle Scholar
  20. 20.
    Lins PMP, Marangoni VS, Uehara TM, Miranda PB, Zucolotto V, Cancino-Bernardi J (2017) Differences in the aspect ratio of gold nanorods that induce defects in cell membrane models. Langmuir 33(50):14286–14294CrossRefGoogle Scholar
  21. 21.
    Yang H, Chen Z, Zhang L, Yung WY, Leung KCF, Chan HYE, Choi CHJ (2016) Mechanism for the cellular uptake of targeted gold nanorods of defined aspect ratios. Small 12(37):5178–5189CrossRefGoogle Scholar
  22. 22.
    Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20(15):6414–6420CrossRefGoogle Scholar
  23. 23.
    Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17-18):1870–1901CrossRefGoogle Scholar
  24. 24.
    Jia Z, Liu J, Shen Y (2007) Fabrication of a template-synthesized gold nanorod-modified electrode for the detection of dopamine in the presence of ascorbic acid. Electrochem Commun 9(12):2739–2743CrossRefGoogle Scholar
  25. 25.
    Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2605CrossRefGoogle Scholar
  26. 26.
    Duckwort HW, Coleman JE (1970) Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem 245:1613–1625Google Scholar
  27. 27.
    Sotomayor MDPT, Tanaka AA, Kubota LT (2003) Tris (2,2′-bipyridil) copper (II) chloride complex: a biomimetic tyrosinase catalyst in the amperometric sensor construction. Electrochim Acta 48(7):855–865CrossRefGoogle Scholar
  28. 28.
    Conrad JS, Dawso SR, Hubbard ER, Meyers TE, Strothkamp KG (1994) Inhibitor binding to the binuclear active-site of tyrosinase—temperature, pH, and solvent deuterium-isotope effects. Biochemistry 33(19):5739–5744CrossRefGoogle Scholar
  29. 29.
    Liu L, Qiu CL, Chen Q, Zhang SM (2006) Corrosion behavior of Zr-based bulk metallic glasses in different artificial body fluids. J Alloys Compd 425(1-2):268–273CrossRefGoogle Scholar
  30. 30.
    Link S, El-Sayed MA (2005) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 109(20):10531–10532CrossRefGoogle Scholar
  31. 31.
    Ye BX, Zhou XY (1997) Direct electrochemical redox of tyrosinase at silver electrodes. Talanta 44(5):831–836CrossRefGoogle Scholar
  32. 32.
    Carralero Sanz V, Mena ML, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528(1):1–8CrossRefGoogle Scholar
  33. 33.
    Chang SC, Rawson K, McNeil CJ (2002) Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. Biosens Bioelectron 17(11-12):1015–1023CrossRefGoogle Scholar
  34. 34.
    Fartas F, Abdullah J, Yusof N, Sulaiman Y, Saiman M (2017) Biosensor based on tyrosinase immobilized on graphene-decorated gold nanoparticle/chitosan for phenolic detection in aqueous. Sensors 17(5):1132CrossRefGoogle Scholar
  35. 35.
    Önnerfjord P, Emnéus J, Marko-Varga G, Gorton L, Ortega F, Domínguez E (1995) Tyrosinase graphite-epoxy based composite electrodes for detection of phenols. Biosens Bioelectron 10(6):607–619CrossRefGoogle Scholar
  36. 36.
    Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron 23(12):1781–1787CrossRefGoogle Scholar
  37. 37.
    Tsai Y-C, Chiu C-C (2007) Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sensors Actuators B Chem 125(1):10–16CrossRefGoogle Scholar
  38. 38.
    Rodríguez-Sevilla E, Ramírez-Silva M-T, Romero-Romo M, Ibarra-Escutia P, Palomar-Pardavé M (2014) Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors. Sensors (Basel, Switzerland) 14(8):14423–14439CrossRefGoogle Scholar
  39. 39.
    Lupu S, Lete C, Balaure PC, Campo FJ, Muñoz FX, Lakard B, Hihn J-Y (2013) In situ electrodeposition of biocomposite materials by sinusoidal voltages on microelectrodes array for tyrosinase based amperometric biosensor development. Sensors Actuators B Chem 181:136–143CrossRefGoogle Scholar
  40. 40.
    Min K, Yoo YJ (2009) Amperometric detection of dopamine based on tyrosinase–SWNTs–Ppy composite electrode. Talanta 80(2):1007–1011CrossRefGoogle Scholar
  41. 41.
    Lupu S, Lete C, Balaure P, Caval D, Mihailciuc C, Lakard B, Hihn J-Y, Campo F (2013) Development of amperometric biosensors based on nanostructured tyrosinase-conducting polymer composite electrodes. Sensors 13(5):6759–6774CrossRefGoogle Scholar
  42. 42.
    Lupu S, Lete C, Javier del Campo F (2015) Dopamine electroanalysis using electrochemical biosensors prepared by a sinusoidal voltages method. Electroanalysis 27:1649–1659CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanomedicine and Nanotoxicology Group, Physics Institute of São CarlosUniversity of São PauloSão CarlosBrazil
  2. 2.Department of Nature Sciences, Mathematics and EducationFederal University of São CarlosArarasBrazil

Personalised recommendations