Advertisement

Charge storage characteristics of layer-by-layer assembled nickel hydroxide and graphene oxide nanosheets

  • F. Eylul Sarac Oztuna
  • Ugur UnalEmail author
Original Paper

Abstract

In this study, layer-by-layer assembled thin films composed of nickel hydroxide and graphene oxide nanosheets were produced via simple dip coating process. The surface topography of the thin films was investigated by atomic force microscopy measurements. Electrical conductivity of the thin films was enhanced by chemical reduction with hydrazine vapor. The effect of chemical reduction on the surface chemical structure was analyzed by X-ray photoelectron spectroscopy. To utilize the produced thin films as possible electrodes for electrochemical energy storage devices, cyclic voltammetric measurements were performed. The areal capacitance of a reduced 9-bilayer [Ni(OH)2/graphene oxide] thin film reached 5.2 mF cm−2 at a scan rate of 2 mV s−1, outperforming similar layer-by-layer assembled metal hydroxide/graphene thin films. Lastly, charge storage characteristics of as-deposited and reduced films were investigated by performing cyclic voltammetry at different scan rates and electrochemical impedance spectroscopy.

Keywords

Graphene oxide nanosheets Layer-by-layer assembly Thin films Electrochemical energy storage Nickel hydroxide nanosheets 

Notes

References

  1. 1.
    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950CrossRefGoogle Scholar
  2. 2.
    Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279CrossRefGoogle Scholar
  3. 3.
    Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS (2013) Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci 6(5):1388CrossRefGoogle Scholar
  4. 4.
    Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162(5):A5185–A5189CrossRefGoogle Scholar
  5. 5.
    Hall DS, Lockwood DJ, Bock C, MacDougall BR (2014) Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc R Soc A 471(2174):20140792–20140792CrossRefGoogle Scholar
  6. 6.
    Ramesh TN, Kamath PV (2006) Synthesis of nickel hydroxide: effect of precipitation conditions on phase selectivity and structural disorder. J Power Sources 156(2):655–661CrossRefGoogle Scholar
  7. 7.
    Tizfahm J, Safibonab B, Aghazadeh M, Majdabadi A, Sabour B, Dalvand S (2014) Supercapacitive behavior of β-Ni(OH)2 nanospheres prepared by a facile electrochemical method. Colloids Surfaces A Physicochem Eng Asp 443:544–551CrossRefGoogle Scholar
  8. 8.
    Liang Z-H, Zhu Y-J, Hu X-L (2004) β-nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. J Phys Chem B 108(11):3488–3491CrossRefGoogle Scholar
  9. 9.
    Yang L-X, Zhu Y-J, Tong H, Liang ZH, Li L, Zhang L (2007) Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. J Solid State Chem 180(7):2095–2101CrossRefGoogle Scholar
  10. 10.
    Mondal AK, Su D, Chen S et al (2014) Microwave-assisted synthesis of spherical β-Ni(OH)2 superstructures for electrochemical capacitors with excellent cycling stability. Chem Phys Lett 610–611:115–120CrossRefGoogle Scholar
  11. 11.
    Ertaş FS, Kaş R, Ünal U, Birer Ö (2013) Sonochemical synthesis and electrochemical characterization of α-nickel hydroxide: precursor effects. J Solid State Electrochem 17(5):1455–1462CrossRefGoogle Scholar
  12. 12.
    Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F (2016) Innovation in layer-by-layer assembly. Chem Rev 116(23):14828–14867CrossRefGoogle Scholar
  13. 13.
    Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9(19):2319–2340CrossRefGoogle Scholar
  14. 14.
    Xiao F-X, Pagliaro M, Xu Y-J, Liu B (2016) Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies. Chem Soc Rev 45(11):3088–3121CrossRefGoogle Scholar
  15. 15.
    Yang M, Hou Y, Kotov NA (2012) Graphene-based multilayers: critical evaluation of materials assembly techniques. Nano Today 7(5):430–447CrossRefGoogle Scholar
  16. 16.
    Sarac Oztuna FE, Unal O, Erdem E, Yagci Acar H, Unal U (2019) Layer-by-layer grown electrodes composed of cationic Fe3O4 nanoparticles and graphene oxide nanosheets for electrochemical energy storage devices. J Phys Chem C 123(6):3393–3401CrossRefGoogle Scholar
  17. 17.
    Fenoy GE, Van der Schueren B, Scotto J et al (2018) Layer-by-layer assembly of iron oxide-decorated few-layer graphene/PANI:PSS composite films for high performance supercapacitors operating in neutral aqueous electrolytes. Electrochim Acta 283:1178–1187CrossRefGoogle Scholar
  18. 18.
    Shakir I, Ali Z, Bae J, Park J, Kang DJ (2014) Layer by layer assembly of ultrathin V2O5 anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes. Nanoscale 6(8):4125–4130CrossRefGoogle Scholar
  19. 19.
    Jana M, Saha S, Samanta P, Murmu NC, Kim NH, Kuila T, Lee JH (2017) A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2 - reduced graphene oxide assembly for supercapacitor application. J Power Sources 340:380–392CrossRefGoogle Scholar
  20. 20.
    Dong X, Wang L, Wang D, Li C, Jin J (2012) Layer-by-layer engineered Co–Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. Langmuir 28(1):293–298CrossRefGoogle Scholar
  21. 21.
    Schneiderová B, Demel J, Pleštil J, Janda P, Bohuslav J, Ihiawakrim D, Ersen O, Rogez G, Lang K (2013) Nickel hydroxide ultrathin nanosheets as building blocks for electrochemically active layers. J Mater Chem A 1(37):11429CrossRefGoogle Scholar
  22. 22.
    Sarac Oztuna FE, Barim SB, Bozbag SE, Yu H, Aindow M, Unal U, Erkey C (2017) Graphene aerogel supported Pt electrocatalysts for oxygen reduction reaction by supercritical deposition. Electrochim Acta 250:174–184CrossRefGoogle Scholar
  23. 23.
    Beyazay T, Sarac Oztuna FE, Unal U (2019) Self-standing reduced graphene oxide papers electrodeposited with manganese oxide nanostructures as electrodes for electrochemical capacitors. Electrochim Acta 296:916–924CrossRefGoogle Scholar
  24. 24.
    Yan J, Sun W, Wei T, Zhang Q, Fan Z, Wei F (2012) Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J Mater Chem 22(23):11494CrossRefGoogle Scholar
  25. 25.
    Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung Dünner Schichten und zur Mikrowägung. Z Phys 155(2):206–222CrossRefGoogle Scholar
  26. 26.
    Matsumoto Y, Koinuma M, Ida S, Hayami S, Taniguchi T, Hatakeyama K, Tateishi H, Watanabe Y, Amano S (2011) Photoreaction of graphene oxide nanosheets in water. J Phys Chem C 115(39):19280–19286CrossRefGoogle Scholar
  27. 27.
    Sarac Oztuna FE, Yagci MB, Unal U (2019) First-row transition metal cations (Co2+, Ni2+, Mn2+, Fe2+) and graphene (Oxide) composites: from structural properties to electrochemical applications. Chem - A Eur J.  https://doi.org/10.1002/chem.201806309
  28. 28.
    Du D, Li P, Ouyang J (2015) Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst. ACS Appl Mater Interfaces 7(48):26952–26,958CrossRefGoogle Scholar
  29. 29.
    Sun L, Wang L, Tian C, Tan T, Xie Y, Shi K, Li M, Fu H (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2(10):4498CrossRefGoogle Scholar
  30. 30.
    Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2012) The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys Chem Chem Phys 14(7):2434–2442CrossRefGoogle Scholar
  31. 31.
    Wagner CD, Gale LH, Raymond RH (1979) Two-dimensional chemical state plots: a standardized data set for use in identifying chemical states by x-ray photoelectron spectroscopy. Anal Chem 51(4):466–482CrossRefGoogle Scholar
  32. 32.
    Moretti G (1998) Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. J Electron Spectros Relat Phenomena 95(2-3):95–144CrossRefGoogle Scholar
  33. 33.
    Powell CJ (2012) Recommended Auger parameters for 42 elemental solids. J Electron Spectros Relat Phenomena 185(1-2):1–3CrossRefGoogle Scholar
  34. 34.
    Ertaş FS, Saraç FE, Ünal U, Birer Ö (2015) Ultrasound-assisted hexamethylenetetramine decomposition for the synthesis of alpha nickel hydroxide intercalated with different anions. J Solid State Electrochem 19(10):3067–3077CrossRefGoogle Scholar
  35. 35.
    Chen J, Bradhurst DH, Dou SX, Liu HK (1999) Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries. J Electrochem Soc 146(10):3606CrossRefGoogle Scholar
  36. 36.
    Sarac FE, Unal U (2015) Electrochemical-hydrothermal synthesis of manganese oxide films as electrodes for electrochemical capacitors. Electrochim Acta 178:199–208CrossRefGoogle Scholar
  37. 37.
    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111(40):14925–14931CrossRefGoogle Scholar
  38. 38.
    Song H-K, Jung Y-H, Lee K-H, Dao LH (1999) Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution. Electrochim Acta 44(20):3513–3519CrossRefGoogle Scholar
  39. 39.
    Sassin MB, Hoag CP, Willis BT, Kucko NW, Rolison DR, Long JW (2013) Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity. Nanoscale 5(4):1649–1657CrossRefGoogle Scholar
  40. 40.
    Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5(9):651–654CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryKoç UniversitySariyerTurkey
  2. 2.Koç University Surface Science and Technology Center (KUYTAM)Koç UniversitySariyerTurkey

Personalised recommendations