Advertisement

A survey on the effect of ionic liquid on electrochemical behavior and electrocatalytic activity of a phosphomolybdic acid-ionic liquid-MWCNT–modified glassy carbon electrode

  • Samaneh Feizy
  • Behzad HaghighiEmail author
Original Paper
  • 14 Downloads

Abstract

The surface of a glassy carbon electrode modified with multi-walled carbon nanotubes (GCE/MWCNTs) was coated with a layer of phosphomolybdic acid (PMo12) and ionic liquid (n-dodecyl pyridinium hexafluorophosphate, [C12Py][PF6]). Cyclic voltammetry was performed to investigate the effect of [C12Py][PF6] on the electrochemical behavior of the prepared modified electrode, GCE/MWCNTs/[C12Py][PF6]-PMo12. The surface coverage and the rate constant of electron transfer for three redox pairs of the immobilized PMo12 were evaluated and compared with those obtained for GCE/MWCNTs/n-octyl pyridinium hexafluorophosphate ([C8Py][PF6])-PMo12 fabricated using [C8Py][PF6] in our previous study to find a correlation between the structure of ionic liquid and its effect. Thereafter, the electrocatalytic activity of GCE/MWCNTs/[C12Py][PF6]-PMo12 towards the reduction of nitrite, H2O2, iodate, bromate, chlorate, and periodate was investigated and the rate constant for the chemical reaction of each analyte with PMo12 at the electrode surface was calculated. The prepared electrode was then applied for the amperometric measurements of the mentioned analytes with the satisfactory electroanalytical characteristics.

Keywords

Phosphomolybdic acid n-Dodecyl pyridinium hexafluorophosphate Modified electrode Electrocatalytic reduction Nitrite H2O2 Iodate Bromate Chlorate Periodate 

Notes

Acknowledgements

The authors would like to thank the Institute for Advanced Studies in Basic Science (IASBS) (grant number G2017IASBS119) for the financial support.

Funding information

The study received financial support from the Institute for Advanced Studies in Basic Science (grant number G2017IASBS119).

References

  1. 1.
    Long D-L, Tsunashima R, Cronin L (2010) Polyoxometalates: building blocks for functional nanoscale systems. Angew Chem Int Ed 49(10):1736–1758Google Scholar
  2. 2.
    Hutin M, Rosnes MH, Long D-L, Cronin L (2013) Polyoxometalates: synthesis and structure—from building blocks to emergent materials. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II—from elements to applications, vol 2. Oxford: Elsevier, pp 241-269Google Scholar
  3. 3.
    Gumerova NI, Rompel A (2018) Synthesis, structures and applications of electron-rich polyoxometalates. Ant Rev Chem 2:0112Google Scholar
  4. 4.
    Sadakane M, Steckhan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98(1):219–238Google Scholar
  5. 5.
    Ueda T (2018) Electrochemistry of polyoxometalates: from fundamental aspects to applications. ChemElectroChem 5(6):823–838Google Scholar
  6. 6.
    Proust A, Matt B, Villanneau R, Guillemot G, Gouzerha P, Izzeta G (2012) Functionalization and post-functionalization: a step towards polyoxometalate-based materials. Chem Soc Rev 41(22):7605–7622Google Scholar
  7. 7.
    Wang P, Wang XP, Jing XY, Zhu GY (2000) Sol-gel-derived, polishable, 1:12-phosphomolybdic acid-modified ceramic-carbon electrode and its electrocatalytic oxidation of ascorbic acid. Anal Chim Acta 424(1):51–56Google Scholar
  8. 8.
    Qian L, Yang X (2005) Preparation and characterization of network composite film containing polyoxometallates and carbon nanotubes. Electrochem Commun 7(5):547–551Google Scholar
  9. 9.
    Li Y, Bu W, Wu L, Sun C (2005) A new amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on titania sol–gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method. Sensors Actuators B Chem 107(2):921–928Google Scholar
  10. 10.
    Kulesza PJ, Skunik M, Baranowska B, Miecznikowski K, Chojak M, Karnicka K, Frackowiak E, Béguin F, Kuhn A, Delville M-H, Starobrzynska B, Ernst A (2006) Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures. Electrochim Acta 51(11):2373–2379Google Scholar
  11. 11.
    Haghighi B, Hamidi H (2009) Electrochemical characterization and application of carbon ionic liquid electrodes containing 1:12 phosphomolybdic acid. Electroanalysis 21(9):1057–1065Google Scholar
  12. 12.
    Haghighi B, Hamidi H, Gorton L (2010) Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: toward sensitive and fast detection of hydrogen peroxide and iodate. Electrochim Acta 55(16):4750–4757Google Scholar
  13. 13.
    Lauinger SM, Sumliner JM, Yin Q, Xu Z, Liang G, Glass EN, Lian T, Hill CL (2015) High stability of immobilized polyoxometalates on TiO2 nanoparticles and nanoporous films for robust, light-induced water oxidation. Chem Mater 27(17):5886–5891Google Scholar
  14. 14.
    Ammam M (2013) Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing. J Mater Chem A 1(21):6291–6312Google Scholar
  15. 15.
    Salavati H, Teimouri A, Kazemi S (2018) Synthesis and characterization of nanocomposite-based heteropolyacid, and its catalytic, photocatalytic and electrochemical performances. Int J Electrochem Sci 13:2887–2910Google Scholar
  16. 16.
    Wang B, Vyas RN, Shaik S (2007) Preparation parameter development for layer-by-layer assembly of Keggin-type polyoxometalates. Langmuir 23(22):11120–11126Google Scholar
  17. 17.
    Skunik M, Baranowska B, Fattakhova D, Miecznikowski K, Chojak M, Kuhn A, Kulesza PJ (2006) Electrochemical charging and electrocatalysis at hybrid films of polymer-interconnected polyoxometallate-stabilized carbon submicroparticles. J Solid State Electrochem 10(3):168–175Google Scholar
  18. 18.
    Turdean G, Popescu IC (2012) Self-assembled architecture based on triiron-substituted polyoxomolybdate anion and positively charged polymer. J Solid State Electrochem 16(2):681–687Google Scholar
  19. 19.
    Fernandes DM, Nunes M, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Delerue-Matos C, Freire C (2017) PMo11V@N-CNT electrochemical properties and its application as electrochemical sensor for determination of acetaminophen. J Solid State Electrochem 21(4):1059–1068Google Scholar
  20. 20.
    Fernandes DM, Brett CMA, Cavaleiro AMV (2011) Layer-by-layer self-assembly and electrocatalytic properties of poly (ethylenimine)-silicotungstate multilayer composite films. J Solid State Electrochem 15(4):811–819Google Scholar
  21. 21.
    Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556(1):38–45Google Scholar
  22. 22.
    MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G, Neil W, Izgorodina EI (2007) Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40(11):1165–1173Google Scholar
  23. 23.
    Zhang S, Sun N, He X, Lu X, Zhang X (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35(4):1475–1517Google Scholar
  24. 24.
    Liu H, Liu Y, Li J (2010) Ionic liquids in surface electrochemistry. Phys Chem Chem Phys 12(8):1685–1697Google Scholar
  25. 25.
    We D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607(2):126–135Google Scholar
  26. 26.
    Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chem Commun (16):1765–1766Google Scholar
  27. 27.
    Haghighi B, Nazari L, Sajjadi SM (2012) Fabrication and application of a sensitive and highly stable copper hexacyanoferrate modified carbon ionic liquid paste electrode for hydrogen peroxide and glucose detection. Electroanalysis 24(11):2165–2175Google Scholar
  28. 28.
    Li Z, Chen J, Pan D, Tao W, Nie L, Yao S (2006) A sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film. Electrochim Acta 51(20):4255–4261Google Scholar
  29. 29.
    Huang BQ, Wang L, Shi K, Xie ZX, Zheng LS (2008) A new strategy for the fabrication of the phosphor polyoxomolybdate modified electrode from ionic liquid solutions and its electrocatalytic activities. J Electroanal Chem 615(1):19–24Google Scholar
  30. 30.
    Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  31. 31.
    Han Z, Zhao Y, Peng J, Tian A, Feng Y, Liu Q (2005) Inorganic–organic hybrid polyoxometalate: preparation, characterization and electrochemistry properties. J Solid State Chem 178(5):1386–1394Google Scholar
  32. 32.
    Liu H, He P, Li Z, Sun C, Shi L, Liu Y, Zhu G, Li J (2005) An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochem Commun 7(12):1357–1363Google Scholar
  33. 33.
    Kachoosangi RT, Musameh MM, Abu-Yousef I, Yousef JM, Kanan SM, Xiao L, Davies SG, Russell A, Compton RG (2009) Carbon nanotube-ionic liquid composite sensors and biosensors. Anal Chem 81(1):435–442Google Scholar
  34. 34.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101(1):19–28Google Scholar
  35. 35.
    Kissinger PT, Preddy CR, Shoup RE, Heineman WR (1996) Laboratory techniques in electroanalytical chemistry. Marcel Dekker, New YorkGoogle Scholar
  36. 36.
    Song W, Chen X, Jiang Y, Liu Y, Sun C, Wang X (1999) Fabrication of a chemically modified electrode containing 12-molybdophosphoric acid by the sol-gel technique and its application as an amperometric detector for iodate. Anal Chim Acta 394(1):73–80Google Scholar
  37. 37.
    Li L, Li W, Sun C, Li L (2002) Fabrication of carbon paste electrode containing 1:12 phosphomolybdic anions encapsulated in modified mesoporous molecular sieve MCM-41 and its electrochemistry. Electroanalysis 14(5):368–375Google Scholar
  38. 38.
    Zhou M, L-p G, F-y L, H-x L (2007) Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode. Anal Chim Acta 587(1):124–131Google Scholar
  39. 39.
    Wang X-l, Wang E-b, Lan Y, Hu C-w (2002) Renewable PMo12-based inorganic-organic hybrid material bulk-modified carbon paste electrode: preparation, electrochemistry and electrocatalysis. Electroanalysis 14(15-16):1116–1121Google Scholar
  40. 40.
    Pariente F, Lorenzo E, Tobalina F, Abruna HD (1995) Aldehyde biosensor based on the determination of NADH enzymatically generated by aldehyde dehydrogenase. Anal Chem 67(21):3936–3944Google Scholar
  41. 41.
    Nicholson RS, Shain I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36(4):706–723Google Scholar
  42. 42.
    Galus Z (1976) Fundamentals of electrochemical analysis. Ellis Horwood, New YorkGoogle Scholar
  43. 43.
    Wang R, Jia D, Cao Y (2012) Facile synthesis and enhanced electrocatalytic activities of organic–inorganic hybrid ionic liquid polyoxometalate nanomaterials by solid-state chemical reaction. Electrochim Acta 72:101–107Google Scholar
  44. 44.
    Dong T, Du J, Cao M, Hu C (2010) The electrochemical properties of 12-molybdophosphoric acid modified ionic liquid carbon paste electrode. J Clust Sci 21(2):155–162Google Scholar
  45. 45.
    Sosnowska M, Goral-Kurbiel M, Skunik-Nuckowska M, Jurczakowski R, Kulesza PJ (2013) Hybrid materials utilizing polyelectrolyte-derivatized carbon nanotubes and vanadium-mixed addenda heteropolytungstate for efficient electrochemical charging and electrocatalysis. J Solid State Electrochem 17(6):1631–1640Google Scholar
  46. 46.
    Shriver-Lake LC, Zabetakis D, Dressick WJ, Stenger DA, Trammell SA (2018) Paper-based electrochemical detection of chlorate. Sensors 18(2):328–328Google Scholar
  47. 47.
    Trammell SA, Shriver-Lake LC, Dressick WJ (2017) Statistical evaluation of an electrochemical probe for the detection of chlorate. Sensors Actuators B Chem 239:951–961Google Scholar
  48. 48.
    Pan Y-C, Thangamuthu R, Chen S-M (2010) Electrocatalytic reduction and determination of iodate and periodate at silicomolybdate-incorporated-glutaraldehyde-cross-linked poly-l-lysine film electrodes. Electroanalysis 22(10):1115–1122Google Scholar
  49. 49.
    Prodromidis MI, Veltsistas PG, Efstathiou CE, Karayannis MI (2001) Amperometric detection of periodate using a graphite electrode modified with a novel a-Keggin-type silicotungstic acid salt and determination of ethylene glycol in antifreeze fluids. Electroanalysis 13(11):960–966Google Scholar
  50. 50.
    Kakhki S, Shams E (2013) A new bifunctional electrochemical sensor for oxidation of cysteine and reduction of iodate. J Electroanal Chem 704:249–254Google Scholar
  51. 51.
    Han L, Liu X, Wang X, Jiang X, You C, Liu X, Li Y, Hua Y, Wang C (2018) A novel crystal-modified electrode based on polyoxometalate (Bu4N)4PW11O39FeIII(H2O) for electrocatalysis. J Solid State Electrochem 22(1):237–243Google Scholar
  52. 52.
    Ji H, Zhu L, Liang D, Liu Y, Cai L, iZhang S, Liu S (2009) Use of a 12-molybdovanadate(V) modified ionic liquid carbon paste electrode as a bifunctional electrochemical sensor. Electrochim Acta 54(28):7429–7434Google Scholar
  53. 53.
    Zoladek S, Rutkowska IA, Blicharska M, Skorupska K, Kulesza PJ (2016) Enhancement of oxygen reduction at Co-porphyrin catalyst by supporting onto hybrid multi-layered film of polypyrrole and polyoxometalate-modified gold nanoparticles. J Solid State Electrochem 20(4):1199–1208Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryInstitute for Advanced Studies in Basic SciencesZanjanIran
  2. 2.Department of Chemistry, College of SciencesShiraz UniversityShirazIran

Personalised recommendations