Advertisement

High-performance of copper-doped vanadium pentoxide porous thin films cathode for lithium-ion batteries

  • Bingbing Hu
  • Li Li
  • Xin Xiong
  • Lijun Liu
  • Chunli Huang
  • Danmei YuEmail author
  • Changguo ChenEmail author
Original Paper
  • 22 Downloads

Abstract

In this work, porous Cu-doped V2O5·nH2O thin film electrodes have been directly synthesized via low-temperature annealing and simple drop-casting method from V2O5/H2O2 sol with various concentration copper ion (Cu2+). It is interesting to find that the mass fraction of Cu2+ has effects on the morphologies, valence state of vanadium, and electrochemical performance of Cu-doped V2O5·nH2O thin film. When the mass fraction of Cu2+ is 1 wt.%, the obtained Cu-doped V2O5·nH2O thin film electrode shows network porous nanostructure. Moreover, it still shows high discharge specific capacity of 344 mAh g−1 at a current density of 250 mA g−1. Excellent cycling stability with only 0.14% per cycle degradation during 104 cycles can be obtained even at a high current density of 550 mA g−1. Improvement of electrochemical performance is attributed to unique network porous nanostructure, accelerating the lithium-ion transfer rate in the de-intercalation or intercalation process.

Keywords

Vanadium pentoxide Copper-doped Thin film Lithium-ion batteries 

Notes

Funding information

This research work was supported by the National Natural Science Foundation of China (no. 21406021).

Supplementary material

10008_2019_4220_MOESM1_ESM.doc (3.8 mb)
ESM 1 (DOC 3934 kb)

References

  1. 1.
    Muldoon J, Bucur CB, Gregory T (2017) Fervent hype behind magnesium batteries: an open call to synthetic chemists-electrolytes and cathodes needed. Angew Chem Int Ed Engl 56(40):12064–12084CrossRefGoogle Scholar
  2. 2.
    Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46(10):3006–3059CrossRefGoogle Scholar
  3. 3.
    Zhou L, Zhang K, Hu Z, Tao Z, Mai L, Kang YM, Chou SL, Chen J (2018) Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv Energy Mater 8(6):1701415CrossRefGoogle Scholar
  4. 4.
    Liu D, Cao G (2010) Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy Environ Sci 3(9):1218–1237CrossRefGoogle Scholar
  5. 5.
    Myung S-T, Amine K, Sun Y-K (2010) Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. J Mater Chem 20(34):7074–7095CrossRefGoogle Scholar
  6. 6.
    Wu K, Qian L, Sun X, Wu N, Zhao H, Zhang Y (2017) Influence of manganese ions dissolved from LiMn2O4 cathode on the degradation of Li4Ti5O12-based lithium-ion batteries. J Solid State Electrochem 22:479–485CrossRefGoogle Scholar
  7. 7.
    Wang Y, Wang L, Ma Z, Gao L, Yin X, Song A, Qin X, Shao G, Gao W (2018) 3D-structured carbon-coated MnO/graphene nanocomposites with exceptional electrochemical performance for Li-ion battery anodes. J Solid State Electrochem 22(10):2977–2987CrossRefGoogle Scholar
  8. 8.
    Liu Y, Gao G, Liang X, Wu G (2018) Nanofibers of V2O5/C@MWCNTs as the cathode material for lithium-ion batteries. J Solid State Electrochem 22(8):2385–2393CrossRefGoogle Scholar
  9. 9.
    Zhao L, Wang S, Pan F, Tang Z, Zhang Z, Zhong S, Zhang J (2018) Thermal convection induced TiO2 microclews as superior electrode materials for lithium-ion batteries. J Mater Chem A 6(25):11688–11693CrossRefGoogle Scholar
  10. 10.
    Zhang C, Chen Z, Guo Z, Lou XW (2013) Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ Sci 6(3):974–978CrossRefGoogle Scholar
  11. 11.
    Rui X, Lu Z, Yu H, Yang D, Hng HH, Lim TM, Yan Q (2013) Ultrathin V2O5 nanosheet cathodes: realizing ultrafast reversible lithium storage. Nanoscale 5(2):556–560CrossRefGoogle Scholar
  12. 12.
    Chen M, Xia X, Yuan J, Yin J, Chen Q (2015) Free-standing three-dimensional continuous multilayer V2O5 hollow sphere arrays as high-performance cathode for lithium batteries. J Power Sources 288:145–149CrossRefGoogle Scholar
  13. 13.
    Yue Q, Jiang H, Hu Y, Jia G, Li C (2014) Mesoporous single-crystalline V2O5 nanorods assembled into hollow microspheres as cathode materials for high-rate and long-life lithium-ion batteries. Chem Commun 50(87):13362–13365CrossRefGoogle Scholar
  14. 14.
    Huang SZ, Cai Y, Jin J, Li Y, Zheng XF, Wang HE, Wu M, Chen LH, Su BL (2014) Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion batteries. J Mater Chem A 2(34):14099–14108CrossRefGoogle Scholar
  15. 15.
    Bai H, Liu Z, Sun DD, Chan SH (2014) Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries. Energy 76:607–613CrossRefGoogle Scholar
  16. 16.
    Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133(40):16291–16299CrossRefGoogle Scholar
  17. 17.
    Cheng J, Wang B, Xin HL, Yang G, Cai H, Nie F, Huang H (2013) Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J Mater Chem A 1(36):10814–10820CrossRefGoogle Scholar
  18. 18.
    Mai L, Dong F, Xu X, Luo Y, An Q, Zhao Y, Pan J, Yang J (2013) Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett 13(2):740–745CrossRefGoogle Scholar
  19. 19.
    Hu B, Xiang Q, Cen Y, Li S, Liu L, Yu D, Chen C (2018) In situ constructing flexible V2O5@GO composite thin film electrode for superior electrochemical energy storage. J Electrochem Soc 165(16):A3738–A3747CrossRefGoogle Scholar
  20. 20.
    Yu DM, Zhang ST, Liu DW, Zhou XY, Xie SH, Zhang QF, Liu YY, Cao GZ (2010) Effect of manganese doping on Li-ion intercalation properties of V2O5 films. J Mater Chem 20(48):10841–10846CrossRefGoogle Scholar
  21. 21.
    Zhan S, Wei Y, Bie X, Wang C, Du F, Chen G, Hu F (2010) Structural and electrochemical properties of Al3+ doped V2O5 nanoparticles prepared by an oxalic acid assisted soft-chemical method. J Alloys Compd 502(1):92–96CrossRefGoogle Scholar
  22. 22.
    Vernardou D, Marathianou I, Katsarakis N, Koudoumas E, Kazadojev II, O’Brien S, Pemble ME, Povey IM (2016) Capacitive behavior of Ag doped V2O5 grown by aerosol assisted chemical vapour deposition. Electrochim Acta 196:294–299CrossRefGoogle Scholar
  23. 23.
    Li S-R, Ge S-Y, Qiao Y, Chen Y-M, Feng X-Y, Zhu J-F, Chen C-H (2012) Three-dimensional porous Fe0.1V2O5.15 thin film as a cathode material for lithium ion batteries. Electrochim Acta 64:81–86CrossRefGoogle Scholar
  24. 24.
    Panagopoulou M, Vernardou D, Koudoumas E, Katsarakis N, Tsoukalas D, Raptis YS (2016) Tunable properties of mg-doped V2O5 thin films for energy applications: Li-ion batteries and electrochromics. J Phys Chem C 121:70–79CrossRefGoogle Scholar
  25. 25.
    Sakunthala A, Reddy MV, Selvasekarapandian S, Chowdari BVR, Selvin PC (2011) Energy storage studies of bare and doped vanadium pentoxide, (V1.95M0.05)O5, M = Nb, Ta, for lithium ion batteries. Energy Environ Sci 4(5):1712CrossRefGoogle Scholar
  26. 26.
    Peng C, Xiao F, Yang J, Li Z, Lei G, Xiao Q, Ding Y, Hu Z (2016) Carbon-encapsulated Mn-doped V2O5 nanorods with long span life for high-power rechargeable lithium batteries. Electrochim Acta 192:216–226CrossRefGoogle Scholar
  27. 27.
    Fang X, Song X, Li Z, Zhang H, Zhang L, Lei G, Xiao Q, Hu Z, Ding Y (2017) Embedding of Mg-doped V2O5 nanoparticles in a carbon matrix to improve their electrochemical properties for high-energy rechargeable lithium batteries †. J Mater Chem A 5:17432–17441CrossRefGoogle Scholar
  28. 28.
    Wang Y, Shang H, Chou T, Cao G (2005) Effects of thermal annealing on the Li(+) intercalation properties of V(2)O(5) × nH(2)O xerogel films. J Phys Chem B 109(22):11361–11366CrossRefGoogle Scholar
  29. 29.
    Zhu J, Cao L, Wu Y, Gong Y, Liu Z, Hoster HE, Zhang Y, Zhang S, Yang S, Yan Q, Ajayan PM, Vajtai R (2013) Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett 13(11):5408–5413CrossRefGoogle Scholar
  30. 30.
    Kristoffersen HH, Metiu H (2016) Structure of V2O5·nH2O xerogels. J Phys Chem C 120(7):3986–3992CrossRefGoogle Scholar
  31. 31.
    Sämann C, Kelesiadou K, Hosseinioun SS, Wachtler M, Köhler JR, Kai PB, Schubert MB, Werner JH (2018) Laser porosificated silicon anodes for lithium ion batteries. Adv Energy Mater 8(1):1701705CrossRefGoogle Scholar
  32. 32.
    Yang Y, Li L, Fei H, Peng Z, Ruan G, Tour JM (2014) Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. ACS Appl Mater Interfaces 6(12):9590–9594CrossRefGoogle Scholar
  33. 33.
    Cao L, Kou L, Li J, Huang J, Yang J, Wang Y (2018) Nitrogen-doped carbon-coated V2O5 nanocomposite as cathode materials for lithium-ion battery. J Mater Sci 53(14):10270–10279CrossRefGoogle Scholar
  34. 34.
    Yao JH, Yin ZL, Zou ZG, Li YW (2017) Y-doped V2O5 with enhanced lithium storage performance. Rsc Advances 7(51):32327–32335CrossRefGoogle Scholar
  35. 35.
    Ji Y, Fang D, Wang C, Zhou Z, Luo Z, Huang J, Yi J (2018) Cobalt-doped V2O5 nanowire arrays on Ti foil for enhanced lithium-ion storage. J Alloys Compd 742:567–576CrossRefGoogle Scholar
  36. 36.
    Xu Y, Dunwell M, Fei L, Fu E, Lin Q, Patterson B, Yuan B, Deng S, Andersen P, Luo H, Zou G (2014) Two-dimensional V2O5 sheet network as electrode for lithium-ion batteries. ACS Appl Mater Interfaces 6(22):20408–20413CrossRefGoogle Scholar
  37. 37.
    Yu D, Qiao Y, Zhou X, Wang J, Li C, Chen C, Huo Q (2014) Mica-like vanadium pentoxide-nanostructured thin film as high-performance cathode for lithium-ion batteries. J Power Sources 266:1–6CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Wang Y, Xiong Z, Hu Y, Song W, Huang Q-a, Cheng X, Chen L-Q, Sun C, Gu H (2017) V2O5 nanowire composite paper as a high-performance lithium-ion battery cathode. ACS Omega 2(3):793–799CrossRefGoogle Scholar
  39. 39.
    Delmas C, Cognac-Auradou H, Cocciantelli JM, Ménétrier M, Doumerc JP (1994) The LixV2O5 system: an overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 69(3-4):257–264CrossRefGoogle Scholar
  40. 40.
    Yan D-J, Zhu X-D, Wang K-X, Gao X-T, Feng Y-J, Sun K-N, Liu Y-T (2016) Facile and elegant self-organization of Ag nanoparticles and TiO2nanorods on V2O5 nanosheets as a superior cathode material for lithium-ion batteries. J Mater Chem A 4(13):4900–4907CrossRefGoogle Scholar
  41. 41.
    Liu Y, Clark M, Zhang Q, Yu D, Liu D, Liu J, Cao G (2011) V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv Energy Mater 1(2):194–202CrossRefGoogle Scholar
  42. 42.
    Zhao H, Pan L, Xing S, Luo J, Xu J (2013) Vanadium oxides–reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance. J Power Sources 222:21–31CrossRefGoogle Scholar
  43. 43.
    Ma Y, Huang A, Zhou H, Ji S, Zhang S, Li R, Yao H, Cao X, Jin P (2017) Template-free formation of various V2O5 hierarchical structures as cathode materials for lithium-ion batteries. J Mater Chem A 5(14):6522–6531CrossRefGoogle Scholar
  44. 44.
    Armer CF, Lübke M, Reddy MV, Darr JA, Li X, Lowe A (2017) Phase change effect on the structural and electrochemical behaviour of pure and doped vanadium pentoxide as positive electrodes for lithium ion batteries. J Power Sources 353:40–50CrossRefGoogle Scholar
  45. 45.
    Yao JH, Yin ZL, Zou ZG, Li YW (2017) Y-doped V2O5 with enhanced lithium storage performance. Rsc Advances 7(51):32327–32335CrossRefGoogle Scholar
  46. 46.
    Li Y, Liu C, Xie Z, Yao J, Cao G (2017) Superior sodium storage performance of additive-free V2O5 thin film electrodes. J Mater Chem A 5(32):16590–16594CrossRefGoogle Scholar
  47. 47.
    Li Y, Yao J, Uchaker E, Zhang M, Tian J, Liu X, Cao G (2013) Sn-doped V2O5 film with enhanced lithium-ion storage performance. J Phys Chem C 117(45):23507–23514CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringChongqing UniversityChongqingChina

Personalised recommendations