Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1297–1302 | Cite as

Bulk-type all-solid-state batteries with mechanically prepared LiCoPO4 composite cathodes

  • Takahiro KozawaEmail author
  • Akira Kondo
  • Kayo Fukuyama
  • Makio Naito
  • Hideyuki Koga
  • Yusuke Shimo
  • Toshiya Saito
  • Hideki Iba
  • Yasushi Inda
  • Tomomi Oono
  • Takashi Katoh
  • Kousuke Nakajima
Short Communication


All-solid-state Li batteries are suitable for the application of 5 V-class cathode materials that can provide high energy densities. However, it is hard to fabricate bulk-type batteries composed of a mixture of active materials and solid electrolytes because of the difficulty of ensuring a conductive path and suppressing the formation of reactive layers at the interface. Herein, we report a simple mechanical processing route to composite cathode granules synthesized from a 5 V-class LiCoPO4 cathode, conductive carbon, and phosphate solid electrolyte. The homogeneously dispersed component particles were granulated during the mechanical treatment. The first discharge capacity is 82 mAh/g for the bulk-type all-solid-state battery obtained by using a composite cathode pellet, polymer solid electrolyte, and Li anode. Scanning transmission electron microscope-electron energy loss spectroscopy measurements did not reveal any Co diffusion or the formation of a resistive layer at the interface between LiCoPO4 and the solid electrolyte. The fabrication of a composite cathode by mechanical treatment is essential for the development of high-energy bulk-type all-solid-state batteries.

Graphical abstract

“Note: This data is mandatory. Please provide.”


LiCoPO4 Composite cathode Phosphate solid electrolyte Mechanical treatment Bulk-type all-solid-state battery 



This study was supported by the project “Applied and Practical LiB Development for Automobile and Multiple Applications” of the New Energy and Industrial Technology Development Organization (NEDO), Japan, and Toyota Motor Corp. The authors thank Dr. Masato Tabuchi (Osaka Soda) for donating polymer SE films.

Supplementary material

10008_2019_4218_MOESM1_ESM.docx (2.2 mb)
ESM 1 (DOCX 2212 kb)


  1. 1.
    Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295CrossRefGoogle Scholar
  2. 2.
    Poullikkas A (2013) A comparative overview of large-scale battery systems for electricity storage. Renew Sust Energy Rev 27:778–788CrossRefGoogle Scholar
  3. 3.
    Jiang YX, Xu JM, Zhung QC, Jin LY, Sun SG (2008) A novel PEO-based composite solid-state polymer electrolyte with methyl group-functionalized SBA-15 filler for rechargeable lithium batteries. J Solid State Electrochem 12(4):353–361CrossRefGoogle Scholar
  4. 4.
    Colò F, Bella F, Nair JR, Gerbaldi C (2017) Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries. J Power Sources 365:293–302CrossRefGoogle Scholar
  5. 5.
    Suriyakumar S, Gopi S, Kathiresan M, Bose S, Gowd EB, Nair JR, Angulakshmi N, Meligrana G, Bella F, Gerbaldi C, Stephan AM (2018) Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim Acta 285:355–364CrossRefGoogle Scholar
  6. 6.
    Zhu L, Zhu P, Fang Q, Jing M, Shen X, Yang L (2018) A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim Acta 292:718–726CrossRefGoogle Scholar
  7. 7.
    Nair JR, Colò F, Kazzazi A, Moreno M, Bresser D, Lin R, Bella F, Meligrana G, Fantini S, Simonetti E, Appetecchi GB, Passerini S, Gerbaldi C (2019) Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J Power Sources 412:398–407CrossRefGoogle Scholar
  8. 8.
    Radzir NNM, Hanifah SA, Ahmad A, Hassan NH, Bella F (2015) Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate. J Solid State Electrochem 19(10):3079–3085CrossRefGoogle Scholar
  9. 9.
    Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778–7781CrossRefGoogle Scholar
  10. 10.
    Hayashi A, Minami K, Tatsumisago M (2010) Development of sulfide glass-ceramic electrolytes for all-solid-state lithium rechargeable batteries. J Solid State Electrochem 14(10):1761–1767CrossRefGoogle Scholar
  11. 11.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686CrossRefGoogle Scholar
  12. 12.
    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1(4):16030CrossRefGoogle Scholar
  13. 13.
    Varzi A, Raccichini R, Passerini S, Scrosati B (2016) Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J Mater Chem A 4(44):17251–17259CrossRefGoogle Scholar
  14. 14.
    Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386CrossRefGoogle Scholar
  15. 15.
    Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem Solid-State Lett 3:178–179CrossRefGoogle Scholar
  16. 16.
    Wolfenstine J, Lee U, Poese B, Allen JL (2005) Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J Power Sources 144(1):226–230CrossRefGoogle Scholar
  17. 17.
    Li HH, Jin J, Wei JP, Zhou Z, Yan J (2009) Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances. Electrochem Commun 11(1):95–98CrossRefGoogle Scholar
  18. 18.
    Sharabi R, Markevich E, Borgel V, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Stinner C (2011) Significantly improved cycling performance of LiCoPO4 cathodes. Electrochem Commun 13(8):800–802CrossRefGoogle Scholar
  19. 19.
    Markevich E, Sharabi R, Gottlieb H, Borgel V, Fridman K, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Bruenig C (2015) Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions. Electrochem Commun 15:22–25CrossRefGoogle Scholar
  20. 20.
    Oh G, Hirayama M, Kwon O, Suzuki K, Kanno R (2016) Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem Mater 28(8):2634–2640CrossRefGoogle Scholar
  21. 21.
    Nakamura E, Kondo A, Matsuoka M, Kozawa T, Naito M, Koga H, Iba H (2016) Preparation of LiCoO2/Li1.3Al0.3Ti1.7(PO4)3 composite cathode granule for all-solid-state lithium-ion batteries by simple mechanical method. Adv Powder Technol 27(3):825–829CrossRefGoogle Scholar
  22. 22.
    Okumura T, Takeuchi T, Kobayashi H (2014) Application of LiCoPO4 positive electrode material in all-solid-state lithium-ion battery. Electrochem 82(10):906–908CrossRefGoogle Scholar
  23. 23.
    Harada R, Aso K, Hayashi A, Tatsumisago M (2015) Preparation of composites with LiCoPO4 electrode and LiTi2(PO4)3 electrolyte for bulk-type all-solid-state lithium batteries. Electrochem 83(10):898–901CrossRefGoogle Scholar
  24. 24.
    Nakamura E, Kondo A, Kozawa T, Abe H, Naito M, Yoshida J, Nakanishi S, Iba H (2014) One-pot mechanical synthesis of LiCoO2 from Li2O powder. J Soc Powder Technol Jpn 51(3):131–135CrossRefGoogle Scholar
  25. 25.
    Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O (2009) Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering. J Power Sources 192(2):689–692CrossRefGoogle Scholar
  26. 26.
    Nagata K, Nanno T (2007) All solid battery with phosphate compounds made through sintering process. J Power Sources 174(2):832–837CrossRefGoogle Scholar
  27. 27.
    Yamamoto H, Tabuchi M, Takeuchi T, Kageyama H, Nakamura O (1997) Ionic conductivity enhancement in LiGe2(PO4)3 solid electrolyte. J Power Sources 68(2):397–401CrossRefGoogle Scholar
  28. 28.
    Li WJ, Hirayama M, Suzuki K, Kanno R (2016) Fabrication and electrochemical properties of a LiCoO2 and Li10GeP2S12 composite electrode for use in all-solid-state batteries. Solid State Ionics 285:136–142CrossRefGoogle Scholar
  29. 29.
    Meng H, Huang B, Yin J, Yao X, Xu X (2015) Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathodes in lithium-ion and all-solid-state lithium batteries. Ionics 21(1):43–49CrossRefGoogle Scholar
  30. 30.
    Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2010) Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes. Electrochim Acta 55(28):8821–8828CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Takahiro Kozawa
    • 1
    Email author
  • Akira Kondo
    • 1
  • Kayo Fukuyama
    • 1
  • Makio Naito
    • 1
  • Hideyuki Koga
    • 2
  • Yusuke Shimo
    • 2
  • Toshiya Saito
    • 2
  • Hideki Iba
    • 2
  • Yasushi Inda
    • 3
  • Tomomi Oono
    • 3
  • Takashi Katoh
    • 3
  • Kousuke Nakajima
    • 3
  1. 1.Joining and Welding Research InstituteOsaka UniversityIbarakiJapan
  2. 2.Toyota Motor CorporationSusonoJapan
  3. 3.OHARA Inc.SagamiharaJapan

Personalised recommendations