Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1201–1209 | Cite as

Engineering of highly conductive and mesoporous ZrV2O7: a cathode material for lithium secondary batteries

  • L. Shreenivasa
  • S. A. Prashanth
  • H. Eranjaneya
  • R. Viswanatha
  • K. Yogesh
  • G. Nagaraju
  • S. AshokaEmail author
Original Paper


The performance of the cathode materials can be enhanced significantly by manipulating the surface properties through a nano-structuring. Porous ZrV2O7 is synthesized, in the present study, by a facile one-step solution-based method wherein the proposed method and the ZrV2O7 have the advantages of less preparation time, low cost, small crystallite size, porous structure, and good electrical conductivity, which dramatically improves the electrochemical properties. The porous ZrV2O7 electrode exhibits the conductivity of 0.57 × 10−6 S/cm, which is close to the conductivity of the traditional cathode materials LiMn2O4 (10−6 S cm−1). The galvanostatic charge-discharge results reveal that the porous ZrV2O7 delivers excellent discharge capacity of 159 mAh g−1 and 126 mAh g−1 at C/10 and 1 C (C = charge and discharge) rate, respectively, besides excellent reversibility.


Zirconium vanadate Energy storage Cathode material Lithium ion 



The authors express the sincere gratitude to the DSU management for extending constant encouragement.

Funding information

The author Ashoka S (SA) was financially supported by the Science and Engineering Research Board (ECR/2017/000743) Government of India. Nagaraju was financially supported by DST-SERB, Govt. of India, New Delhi (Ref. No. SB/FT/CS-083/2012).

Supplementary material

10008_2019_4212_MOESM1_ESM.docx (775 kb)
ESM 1 (DOCX 774 kb)
10008_2019_4212_MOESM2_ESM.cif (36 kb)
ESM 2 (CIF 35 kb)


  1. 1.
    Kang K, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRefGoogle Scholar
  2. 2.
    Scrosati B, Garche J (2010) Lithium batteries: Status, prospects and future. J Power Sources 195:2419–2430CrossRefGoogle Scholar
  3. 3.
    Croy JR, Abouimrane A, Zhang Z (2014) Next-generation lithium-ion batteries: The promise of near-term advancements. MRS Bull 39:407–415CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Huo Q, Du PP, Wang L, Zhang A, Song YH, Yan L, Li G (2012) Advances in new cathode material LiFePO4 for lithium-ion batteries. Synth Met 162:1315–1326CrossRefGoogle Scholar
  5. 5.
    Delmas C, Cognac-Auradou H, Cocciantelli JM, Ménétrier M, Doumerc JP (1994) The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 69:257–264CrossRefGoogle Scholar
  6. 6.
    Dickens PG, French SJ, Hight AT, Pye MF (1979) Lithium batteries and cathode materials. MRS Bull 14:1295–1299CrossRefGoogle Scholar
  7. 7.
    Whittingham MS (1976) The role of ternary phases in cathode reactions. J Electrochem Soc 123:315–320CrossRefGoogle Scholar
  8. 8.
    Murphy DW, Christian PA, DiSalvo FJ, Waszczak JV (1979) Lithium incorporation by vanadium pentoxide. Inorg Chem 18:2800–2803CrossRefGoogle Scholar
  9. 9.
    Uchaker E, Zhou N, Li Y, Cao G (2013) Polyol-Mediated Solvothermal Synthesis and Electrochemical Performance of Nanostructured V2O5 Hollow Microspheres. Phys Chem C 117:1621–1626CrossRefGoogle Scholar
  10. 10.
    Da Silva DL, Moreira EC, Dias FT, Vieira VN, Brandt IS, Da Cas Viegas A, Pasa AA (2015) Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V2O5): Peroxovanadate sol gel synthesis and structural study. J Solid State Chem 221:116–125CrossRefGoogle Scholar
  11. 11.
    Andrukaitis E, Judy Cooper P, John Smit H (1995) Lithium intercalation in the divalent metal vanadates MeV2O6 (Me= Cu, Co, Ni, Mn or Zn). J Power Sources 54(2):465–469CrossRefGoogle Scholar
  12. 12.
    Julien C, Massot M, Vicente CP (2000) Structural and vibrational studies of LiNi1− yCoyVO4 (0≤ y≤ 1) cathodes materials for Li-ion batteries. Mat Sci Eng B 75:6–12CrossRefGoogle Scholar
  13. 13.
    Prabaharan SRS, Michael MS, Radhakrishna S, Julien C (1997) Novel low-temperature synthesis and characterization of LiNiVO4 forhigh-voltage Li-ion batteries. J Mater Chem 7:1791–1796CrossRefGoogle Scholar
  14. 14.
    Cao Y, Fang D, Liu R, Jiang M, Zhang H, Li G, Luo Z, Liu X, Xu J, Xiong C, Xu W (2015) Three-dimensional porous iron vanadate nanowire arrays as a high-performance lithium-ion battery. ACS Appl Mater Interfaces 7:27685–27693CrossRefGoogle Scholar
  15. 15.
    Yanase I, Chida H, Kobayashi H (2018) Fabrication and negative thermal expansion properties of P-substituted ZrV2O7 sintered bodies. J Eur Ceram Soc 38:221–226CrossRefGoogle Scholar
  16. 16.
    Kuang Q, Zhao Y, Dong Y, Fan Q (2015) Sol-gel synthesized zirconium pyrovanadate as a high-capacity cathode for rechargeable Li batteries. Electrochim Acta 170:229–233CrossRefGoogle Scholar
  17. 17.
    Li Q, Zhao Y, Kuang Q, Fan Q, Dong Y, Liu X (2016) Superstructure ZrV 2 O 7 nanofibres: thermal expansion, electronic and lithium storage properties. Phys Chem Chem Phys 18:32160–32168CrossRefGoogle Scholar
  18. 18.
    Khosrovani N, Sleight AW, Vogt T (1997) Structure of ZrV2O7 from− 263 to 470° C. J Solid State Chem 132:355–360CrossRefGoogle Scholar
  19. 19.
    Evans JSO, Hanson JC, Sleight AW (1998) Room-Temperature Superstructure of ZrV2O7. Acta Crystallogr Sec B: Structural Science 54:705–713CrossRefGoogle Scholar
  20. 20.
    Rodrigues LCV, Brito HF, Hölsa J, Stefani R, Felinto MCFC, Lastusaari M, Laamanen T, Nunes LAO (2012) Discovery of the Persistent Luminescence Mechanism of CdSiO3:Tb3+. J Phys Chem C 116:11232–11240CrossRefGoogle Scholar
  21. 21.
    Vidya YS, Anantharaju KS, Nagabhushana H, Sharma SC, Nagaswarupa HP, Prashantha SC, Shivakumara C, Danithkumar (2015) Combustion synthesized tetragonal ZrO2: Eu3+ nanophosphors: structural and photoluminescence studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135:241–251CrossRefGoogle Scholar
  22. 22.
    Hemamala ULC, El-Ghussein F, Muthu DVS, Krogh Andersen AM, Carlson S, Ouyang L, Kruger MB (2007) High-pressure Raman and infrared study of ZrV2O7. Solid State Commun 141:680–684CrossRefGoogle Scholar
  23. 23.
    Yuan HL, Yuan BH, Li F, Liang EJ (2012) Phase transition and thermal expansion properties of ZrV2-xPxO7. Acta Phys Sin 61:226502–226507Google Scholar
  24. 24.
    Liu Q, Yang J, Rong X, Sun X, Cheng X, Tang H, Li H (2014) Structural, negative thermal expansion and photocatalytic properties of ZrV2O7: a comparative study between fibers and powders. Mater Charact 96:63–70CrossRefGoogle Scholar
  25. 25.
    Zhao C, Song H, Zhuang Q, Ma Q, Liang J, Peng H, Mao C, Zhang Z, Li G (2018) Self-polymerized hollow Mo-dopamine complex-induced functional MoSe2/N-doped carbon electrodes with enhanced lithium/sodium storage properties. Inorg Chem Front 5:1026–1032CrossRefGoogle Scholar
  26. 26.
    Sun W, Li Y, Liu Y, Guo Q, Luo S, Yang J, Zhenga C, Xie K (2018) Hierarchical waxberry-like LiNi 0.5Mn1.5O4 as an advanced cathode material for lithium-ion batteries with a superior rate capability and long-term cyclability. J Mater Chem A 6:14155–14161CrossRefGoogle Scholar
  27. 27.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  28. 28.
    Ma H, Zhang SY, Ji WQ, Tao ZL, Chen J (2008) α-CuV2O6 Nanowires: Hydrothermal Synthesis and Primary Lithium Battery Application. J Am Chem Soc 130:5361–5367CrossRefGoogle Scholar
  29. 29.
    Syed Nizar SA, Ramar V, Venkatesan T, Balaya P, Valiyaveettil S (2018) Enhanced electrochemical performance of W incorporated VO2 nanocomposite cathode material for lithium battery application. Electrochimi Acta 282:480–489CrossRefGoogle Scholar
  30. 30.
    Deng C, Zhang S, Yang SY, Gao Y, Wu B, Ma L, Fu BL, Wu Q, Liu FL (2011) Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries. J Phys Chem C 115:15048–15056CrossRefGoogle Scholar
  31. 31.
    Tepavcevic S, Xiong H, Stamenkovic VR, Zuo XB, Balasubramanian M, Prakapenka VB, Johnson CS, Rajh T (2012) Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6:530–538CrossRefGoogle Scholar
  32. 32.
    Huang Z, Cao L, Chen L, Kuang Y, Zhou H, Fu C, Chen Z (2016) Preparation, Characterization, and Lithium Intercalation Behavior of LiVO3 Cathode Material for Lithium-Ion Batteries. J Phys Chem C 120:3242–3249CrossRefGoogle Scholar
  33. 33.
    Ramar V, Balaya P (2013) Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalent co-doping. Phys Chem Chem Phys 15:17240–17249CrossRefGoogle Scholar
  34. 34.
    Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148:45–51CrossRefGoogle Scholar
  35. 35.
    Ma Q, Song H, Zhuang Q, Liu J, Zhang Z, Mao C, Peng H, Li G, Chen K (2018) Iron-nitrogen-carbon species boosting fast conversion kinetics of Fe1-xS@C nanorods as high rate anodes for lithium ion batteries. Chem Eng J 338:726–733CrossRefGoogle Scholar
  36. 36.
    Vellaisamy M, Nallathamby K (2015) Li2Ni0.5Mn0.5SnO4/C: A Novel Hybrid Composite Electrode for High Rate Applications. Inorg chem 54:8590–8597CrossRefGoogle Scholar
  37. 37.
    Ma F, Yuan A, Xu J (2014) Nano particulate Mn3O4/VGCF Composite Conversion-Anode Material with Extraordinarily High Capacity and Excellent Rate Capability for Lithium Ion Batteries. ACS Appl Mater Interfaces 6:18129–18138CrossRefGoogle Scholar
  38. 38.
    Zhang YJ, Qu J, Hao SM, Chang W, Ji QY, Yu ZZ (2017) Neuron-Inspired Fe3O4/Conductive Carbon Filament Network for High-Speed and Stable Lithium Storage. ACS Appl Mater Interfaces 9:41878–41886CrossRefGoogle Scholar
  39. 39.
    Chen R, Knapp M, Yavuz M, Heinzmann R, Wang D, Ren S, Trouillet V, Lebedkin S, Doyle S, Hahn H, Ehrenberg H, Indris S (2014) Reversible Li+ Storage in a LiMnTiO4 Spinel and Its Structural Transition Mechanisms. J Phys Chem C 118:12608–12616CrossRefGoogle Scholar
  40. 40.
    Cao X, Xie J, Zhan H, Zhou Y (2006) Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel. Mater chem and phys 98:71–75CrossRefGoogle Scholar
  41. 41.
    Shreenivasa L, Yogesh K, Nagaraju G, Ashoka S (2018) A new and effective approach for Fe2V4O13 nanoparticles synthesis: Evaluation of electrochemical performance as cathode for lithium secondary batteries. J Alloys Compd 737:665–671CrossRefGoogle Scholar
  42. 42.
    Orsini F, Baudrin E, Denis S, Dupont L, Touboul M, Guyomard D, Piffard Y, Tarascon JM (1998) Chimie douce'synthesis and electrochemical properties of amorphous and crystallized LiNiVO4 vs. Li. Solid State Ionics 107:123–133CrossRefGoogle Scholar
  43. 43.
    Baudrin E, Laruelle S, Denis S, Touboul M, Tarascon JM (1999) Synthesis and electrochemical properties of cobalt vanadates vs. lithium. Solid State Ionics 123:139–153CrossRefGoogle Scholar
  44. 44.
    Hao P, Zhu T, Su Q, Lin J, Cui R, Cao X, Wang Y, Pan A (2018) Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries. Front Chem 6:1–9CrossRefGoogle Scholar
  45. 45.
    Liang S, Chen T, Pan A, Liu D, Zhu Q, Cao G (2013) Synthesis of Na1.25V3O8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries. ACS Appl Mater Interfaces 5:11913–11917CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of EngineeringDayananda Sagar UniversityBangaloreIndia
  2. 2.PG Department of ChemistryKLE’s PC Jabin Science CollegeHubballiIndia
  3. 3.Department of Chemistry, Central College CampusBangalore UniversityBengaluruIndia
  4. 4.Department of ChemistryPresidency UniversityBengaluruIndia
  5. 5.Department of Physics, School of EngineeringDayananda Sagar UniversityBangaloreIndia
  6. 6.Department of ChemistrySree siddaganga Institute of TechnologyTumkurIndia

Personalised recommendations