Electrochemical enzymatic biosensor for tyramine based on polymeric matrix derived from 4-mercaptophenylacetic acid

  • Iara Pereira Soares
  • Amanda Gonçalves da Silva
  • Rafael da Fonseca Alves
  • Ricardo Augusto Moreira de Souza Corrêa
  • Lucas Franco Ferreira
  • Diego Leoni FrancoEmail author
Original Paper


In this paper, we investigated a novel functionalized polymeric film derived from 4-mercaptophenylacetic acid (MPAA). The polymerization was carried out through cyclic voltammetry (CV). Electrochemical, spectroscopic, and morphological analyses were used for characterization. Only acidic medium provided an efficient electrode modification as the electrochemical and morphological profiles obtained from treatment in alkaline solution resembles the unmodified electrode. The electrostatic repulsion between the carboxylate anions in the polymer and ferricyanide probe was verified by the current decrease in CV profiles and by the resistance of charge transfer increase through electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) images showed a complete and homogeneous coverage with a splinter-like morphology. The polymer presents stability under storage conditions until 35 days with no lixiviation during washing steps or loss of activity. The FT-IR measurements confirm the presence of the carboxyl group in the polymer suggesting a polymerization through the sulfur atom, which led to a mechanism proposal. The immobilization of enzyme tyrosinase over this platform and the detection of tyramine were performed successfully. 50 U of the enzyme for 18 h at pH 7.2 was the optimum parameters leading to a limit of detection and limit of quantification of 3.16 μmol L and 10.52 μmol L, respectively. With Kmapp of 62.11 μmol L and a recovery rate of 110.84% in a wine sample, the novel, stable, functionalized material formed over a low-cost electrode is suitable for further electrochemical applications exploiting the chemical reaction of carboxyl groups for biosensor purposing.


Electropolymerization 4-mercaptophenylacetic acid Characterization Enzymatic biosensor Tyramine 



The authors would like to acknowledge “FEQ/UFU/Laboratório de Multiusuário de Microscopia Eletrônica de Varredura and “Laboratório de Quimiometria do Triângulo (LQT/UFU)”. This work is a collaboration research project of members of the Rede Mineira de Química (RQ-MG) supported by FAPEMIG (Project: CEX - RED-00010-14).

Funding information

The authors received financial support from the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) (Project: 460799/2014-2) and the “Fundação de Amparo à Pesquisa do Estado de Minas Gerais” (FAPEMIG) (Project: APQ-00711-14).

Supplementary material

10008_2019_4204_MOESM1_ESM.docx (562 kb)
ESM 1 (DOCX 562 kb)


  1. 1.
    Moses PR, Wier L, Murray RW (1975) Chemically modified tin oxide electrode. Anal Chem 47(12):1882–1886CrossRefGoogle Scholar
  2. 2.
    Murray RW (1980) Chemically modified electrodes. Acc Chem Res 13(5):135–141CrossRefGoogle Scholar
  3. 3.
    Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2149–2496CrossRefGoogle Scholar
  4. 4.
    Barsan MM, Ghica ME, Brett CMA (2015) Electrochemical sensors and biosensors based on redox polymer/ carbon nanotube modified electrodes: a review. Anal Chim Acta 881:1–23CrossRefGoogle Scholar
  5. 5.
    Lakard S, Husson J, Monney S, Buron CC, Lakard B (2016) Towards carboxylic acid-functionalized aniline monomers: chemical synthesis, electropolymerization and characterization. Prog Org Coat 99:429–436CrossRefGoogle Scholar
  6. 6.
    Evtugyn G, Hianik T (2016) Electrochemical DNA sensors and aptasensors based on electropolymerized materials and polyelectrolyte complexes. Trends Anal Chem 79:168–178CrossRefGoogle Scholar
  7. 7.
    Ates M (2013) A review study of (bio)sensor systems based on conducting polymers. Mater Sci Eng C 33:1853–1859CrossRefGoogle Scholar
  8. 8.
    Yan H, Zhang G, Li Y (2017) Synthesis and characterization of advanced Li3V2(PO4)3 nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries. Appl Surf Sci 393:30–36CrossRefGoogle Scholar
  9. 9.
    Saranya K, Rameez MD, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – an overview. Eur Polym J 66:207–227CrossRefGoogle Scholar
  10. 10.
    Jiang S, Yi B, Cao L, Song W, Zhao Q, Yu H, Shao Z (2016) Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes. J Power Sources 329:347–354CrossRefGoogle Scholar
  11. 11.
    Lim YG, Park MS, Kim KJ, Jung KS, Kim JH, Shahabuddin M, Byun D, Yu JS (2015) Incorporation of conductive polymer into soft carbon electrodes for lithium ion capacitors. J Power Sources 299:49–56CrossRefGoogle Scholar
  12. 12.
    Rodríguez LMT, Torres FGR, Orta NEG, Martínez JFR (2017) Electrochemical and electrogravimetric studies of the deposition and catalysis of capsaicin in polyaniline: a preliminary study of the determination of chili hotness. Synth Met 223:153–165CrossRefGoogle Scholar
  13. 13.
    Dubey N, Leclerc M (2011) Conducting polymers: efficient thermoelectric materials. J Polym Sci Polym Phys 49(7):467–475CrossRefGoogle Scholar
  14. 14.
    Wang Q, Zhang J, Sun J (2016) A series of new tin compounds derived from 4-Mercaptophenylacetic acid: synthesis and characterization. J Organomet Chem 803:128–133CrossRefGoogle Scholar
  15. 15.
    Wang Q, Zhang J, Han Y (2016) Synthesis and characterization of a novel two-dimensional network polymer containing 18- and 26-membered organotin macrocycles. Heteroat Chem 27(1):32–36CrossRefGoogle Scholar
  16. 16.
    Johnson ECB, Kent SBH (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128(20):6640–6646CrossRefGoogle Scholar
  17. 17.
    Sakamoto K, Tsuda S, Mochizuki M, Nohara Y, Nishio H, Yoshiya T (2016) Imidazole-aided native chemical ligation: imidazole as a one-pot desulfurization-amenable non-thiol-type alternative to 4- Mercaptophenylacetic acid. Chem Eur J 22(50):17940–17944CrossRefGoogle Scholar
  18. 18.
    Gandhi NP, Rohit JV, Kumar MA, Kailasa SK (2013) 4-mercaptophenylacetic acid functionalized Mn2+-doped ZnS nanoparticles luorescence quenching caused by the addition of Cu2+. Res Chem Intermed 39(8):3631–3639CrossRefGoogle Scholar
  19. 19.
    Wu J, Shen YD, Lei HT, Sun YM, Yang JY, Xiao ZL, Wang H, Xu ZL (2014) Hapten synthesis and development of a competitive indirect enzyme-linked immunosorbent assay for acrylamide in food samples. J Agric Food Chem 62(29):7078–7084CrossRefGoogle Scholar
  20. 20.
    Dibbell RS, Youker DG, Watson DF (2009) Excited-state electron transfer from CdS quantum dots to TiO2 nanoparticles via molecular linkers with phenylene bridges. J Phys Chem C 113(43):18643–18651CrossRefGoogle Scholar
  21. 21.
    Christiaens P, Vermeeren V, Wenmackers S, Daene M, Haenen K, Nesladek M, Vandeven M, Ameloot M, Michiels L, Wagner P (2006) EDC-mediated DNA attachment to nanocrystalline CVD diamond films. Biosens Bioelectron 22(2):170–177CrossRefGoogle Scholar
  22. 22.
    Jiang B, Zhou K, Wang C, Sun Q, Yin G, Tai Z, Wilson K, Zhao J, Zhang L (2018) Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sensors Actuators B Chem 254:1033–1039CrossRefGoogle Scholar
  23. 23.
    Kaçar C, Erden PE, Kiliç E (2017) Amperometric l-lysine biosensor based on carboxylated multiwalled carbon nanotubes-SnO2 nanoparticles-graphene composite. Appl Surf Sci 419:916–923CrossRefGoogle Scholar
  24. 24.
    Kanchanapally R, Nellore BPV, Sinha SS, Pedraza F, Jones SJ, Pramanik A, Chavva RS, Tchounwou C, Shi Y, Vangara A, Sardar D, Ray PC (2015) Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv 5(24):18881–18887CrossRefGoogle Scholar
  25. 25.
    Kwon OS, Park CS, Park SJ, Noh S, Kim S, Kong HJ, Bae J, Lee CS, Yoon H (2016) Carboxylic acid-functionalized conducting-polymer nanotubes as highly sensitive nerve-agent chemiresistors. Sci Rep 6(1):33724CrossRefGoogle Scholar
  26. 26.
    Peng H, Alemany LB, Margrave JL, Khabashesku VN (2003) J Am Chem Soc 125(49):15174–15182CrossRefGoogle Scholar
  27. 27.
    Bedford EE, Boujday S, Humblot V, Gu FX, Pradier CM (2014) Effect of SAM chain length and binding functions on protein adsorption: β-Lactoglobulin and apo-transferrin on gold. Colloids Surf B 116:489–496CrossRefGoogle Scholar
  28. 28.
    Azak H, Kurbanoglu S, Yildiz HB, Ozkan SA (2016) Electrochemical glucose biosensing via new generation DTP type conducting polymers/gold nanoparticles/glucose oxidase modified electrodes. J Electroanal Chem 770:90–97CrossRefGoogle Scholar
  29. 29.
    Zhao N, Fabre B, Bobadova-Parvanova P, Fronczek FR, Vicente MGH (2017) Synthesis and electropolymerization of a series of 2,2′-(ortho-carboranyl)bisthiophenes. J Organomet Chem 828:157–165CrossRefGoogle Scholar
  30. 30.
    Yang YJ, Guo L, Zhang W (2016) The electropolymerization of CTAB on glassy carbon electrode for simultaneous determination of dopamine, uric acid, tryptophan and theophylline. J Electroanal Chem 768:102–109CrossRefGoogle Scholar
  31. 31.
    Manasa G, Mascarenhas TJ, Satpati AK, D'Souza OJ, Dhason A (2017) Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin. Mater Sci Eng C 73:552–561CrossRefGoogle Scholar
  32. 32.
    Gupta P, Goyal RN (2014) Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonina. Talanta 120:17–22CrossRefGoogle Scholar
  33. 33.
    Ding W, Xu J, Wen Y, Zhang H, Zhang J (2016) Facile fabrication of fluorescent poly(5-cyanoindole) thin film sensor via electropolymerization for detection of Fe3+ in aqueous solution. J Photochem Photobiol A 314:22–28CrossRefGoogle Scholar
  34. 34.
    Huynh TP, Sharma PS, Sosnowska M, D’Souza F, Kutner W (2015) Functionalized polythiophenes: recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability. Prog Polym Sci 47:1–25CrossRefGoogle Scholar
  35. 35.
    Silva LAJ, Silva WB, Giuliani JG, Canobre SC, Garcia CD, Munoz RAA, Richter EM (2017) Use of pyrolyzed paper as disposable substrates for voltammetric determination of trace metals. Talanta 165:33–38CrossRefGoogle Scholar
  36. 36.
    Park KK, Lee JB, Park PY, Yoon SW, Moon JS, Eum HM, Lee CW (2007) Development of a carbon sheet electrode for electrosorption desalination. Desalination 206(1-3):86–91CrossRefGoogle Scholar
  37. 37.
    Hamdam NA, Issa R, Noh MFM, Zin NM (2012) Electrochemical technique using methylene blue with pencil graphite electrode for optimum detection of Mycobacterium tuberculosis, DNA. Curr Res Tuberc 4:1–12CrossRefGoogle Scholar
  38. 38.
    Wang J, Kawde AN, Sahlin E (2000) Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst 125(1):5–7CrossRefGoogle Scholar
  39. 39.
    Navratil R, Kotzianova A, Halouzka V, Opletal T, Triskova I, Trnkova L, Hrbac J (2016) Polymer lead pencil graphite as electrode material: voltammetric, XPS and Raman study. J Electroanal Chem 783:152–160CrossRefGoogle Scholar
  40. 40.
    Moret S, Smela D, Populin T, Conte LS (2005) A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem 89(3):355–361CrossRefGoogle Scholar
  41. 41.
    McCable-Sellers BJ, Staggs CG, Bogle ML (2006) Tyramine in foods and monoamine oxidase inhibitor drugs: a crossroad where medicine, nutrition, pharmacy, and food industry converge. J Food Compos Anal 19:S58–S65CrossRefGoogle Scholar
  42. 42.
    Liu SJ, Xu JJ, Ma CL, Guo CF (2018) A comparative analysis of derivatization strategies for the determination of biogenic amines in sausage and cheese by HPLC. Food Chem 266:275–283CrossRefGoogle Scholar
  43. 43.
    An D, Chen Z, Zheng J, Chen S, Wang L, Huang Z, Weng L (2015) Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence. Food Chem 168:1–6CrossRefGoogle Scholar
  44. 44.
    Apetrei IM, Apetrei C (2013) Amperometric biosensor based on polypyrrole and tyrosinase for the detection of tyramine in food samples. Sensors Actuators B Chem 178:40–46CrossRefGoogle Scholar
  45. 45.
    Yuqing M, Jianrong C, Xiaohua W (2004) Using electropolymerized non-conducting polymers to develop enzyme amperometric biosensors. Trends Biotechnol 22(5):227–231CrossRefGoogle Scholar
  46. 46.
    Toutillon G, Gariner F (1982) New electrochemically generated organic conducting polymers. J Electroanal Chem 135(1):173–178CrossRefGoogle Scholar
  47. 47.
    Kanazawa KK, Diaz AF, Gill WD, Grant PM, Street GB, Gardini GP, Kwak JF (1979/1980) Polypyrrole: an electrochemically synthesized conducting organic polymer. Synth Met 1:329–336CrossRefGoogle Scholar
  48. 48.
    Heinze J (1990) Electronically conducting polymers. Top Curr Chem 152:1–47CrossRefGoogle Scholar
  49. 49.
    Alves RF, Silva AG, Ferreira LF, Franco LF (2017) Synthesis and characterization of a material derived from 4- mercaptobenzoic acid: a novel platform for oligonucleotide immobilization. Talanta 165:69–75CrossRefGoogle Scholar
  50. 50.
    Cruz FS, Paula FS, Franco DL, Santos WTP, Ferreira LF (2017) Electrochemical detection of uric acid using graphite screen-printed electrodes modified with Prussian blue/poly(4-aminosalicylic acid)/Uricase. J Electroanal Chem 806:172–179CrossRefGoogle Scholar
  51. 51.
    Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29(2):205–220CrossRefGoogle Scholar
  52. 52.
    Santos TVS, Teixeira RR, Franco DL, Madurro JM, Brito-Madurro AG, Espindola FS (2012) Bioelectrode for detection of human salivary amylase. Mater Sci Eng C 32(3):530–535CrossRefGoogle Scholar
  53. 53.
    Paraíso LF, Paula LF, Franco DL, Madurro JM, Brito-Madurro AG (2014) Bioelectrochemical detection of alanine aminotransferase for molecular diagnostic of the liver disease. Int J Electrochem Sci 9:1286–1297Google Scholar
  54. 54.
    Franco DL, Afonso AS, Vieira SN, Ferreira LF, Gonçalves RA, Brito-Madurro AG, Madurro JM (2008) Electropolymerization of 3-aminophenol on carbon graphite surface: electric and morphologic properties. Mater Chem Phys 107(2-3):404–409CrossRefGoogle Scholar
  55. 55.
    Khouri SJ (2015) Titrimetric study of the solubility and dissociation of benzoic acid in water: effect of ionic strength and temperature. Am J Anal Chem 6(05):429–436CrossRefGoogle Scholar
  56. 56.
    DeCollo TV, Lees WJ (2001) Effects of aromatic thiols on thiol-disulfide interchange reactions that occur during protein folding. J Org Chem 66(12):4244–4249CrossRefGoogle Scholar
  57. 57.
    Ivanova YN, Karyakin AA (2004) Electropolymerization of flavins and the properties of the resulting electroactive films. Electrochem Commun 6(2):120–125CrossRefGoogle Scholar
  58. 58.
    Zhou Y, Zhao H, Li C, He P, Peng W, Yuan L, Zeng L, He Y (2012) Colorimetric detection of Mn2+ using silver nanoparticles co functionalized with 4-mercaptobenzoic acid and melamine as a probe. Talanta 97:331–335CrossRefGoogle Scholar
  59. 59.
    Li R, Lu H, Zhang X, Liu P, Chen L, Cheng J, Zhao B (2015) Vibrational spectroscopy and density functional theory study of 4-mercaptobenzoic acid. Spectrochim Acta A 148:369–374CrossRefGoogle Scholar
  60. 60.
    Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, USAGoogle Scholar
  61. 61.
    Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2015) Introduction to spectroscopy, 5th edn. Cengage Learning, USAGoogle Scholar
  62. 62.
    Sanchéz-Ferrer A, Rodríguez-López JN, García-Cánovas F, García-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247(1):1–11CrossRefGoogle Scholar
  63. 63.
    Silva TAR, Ferreira LF, Souza LM, Goulart LR, Madurro JM, Brito-Madurro AG (2009) New approach to immobilization and specific-sequence detection of nucleic acids based on poly(4-hydroxyphenylacetic acid). Mater Sci Eng C 29(2):539–545CrossRefGoogle Scholar
  64. 64.
    Villalonga R, Paula D, Yáñez-Sedeño P, Pingarrón JM (2011) Wiring horseradish peroxidase on gold nanoparticles-based nanostructured polymeric network for the construction of mediatorless hydrogen peroxide biosensor. Electrochim Acta 56(12):4672–4677CrossRefGoogle Scholar
  65. 65.
    Küçük A, Torul O (2018) Voltammetric sensor based on poly(3-methylthiophene) synthesized in dichloromethane for tyramine determination in moldy cheese. Synth Met 237:23–28CrossRefGoogle Scholar
  66. 66.
    Batra B, Lata S, Devi R, Yadav S, Pundir CS (2012) Fabrication of an amperometric tyramine biosensor based on immobilization of tyramine oxidase on AgNPs/l-Cys-modified Au electrode. J Solid State Electrochem 16(12):3869–3876CrossRefGoogle Scholar
  67. 67.
    Telsnig D, Kalcher K, Leitner A, Ortner A (2013) Design of an amperometric biosensor for the determination of biogenic amines using screen printed carbon working electrodes. Electroanalysis 25(1):47–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Iara Pereira Soares
    • 1
  • Amanda Gonçalves da Silva
    • 1
  • Rafael da Fonseca Alves
    • 1
  • Ricardo Augusto Moreira de Souza Corrêa
    • 2
  • Lucas Franco Ferreira
    • 2
  • Diego Leoni Franco
    • 1
    Email author
  1. 1.Grupo de Eletroquímica Aplicada a Polímeros e Sensores - Laboratório de Eletroanalítica Aplicada à Biotecnologia e Engenharia de Alimentos - Instituto de QuímicaUniversidade Federal de Uberlândia - Campus Patos de MinasPatos de MinasBrazil
  2. 2.Laboratório de Eletroquímica e Nanotecnologia Aplicada - Instituto de Ciência e TecnologiaUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil

Personalised recommendations