Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 997–1059 | Cite as

Electrolyte for energy storage/conversion (Li+, Na+, Mg2+) devices based on PVC and their associated polymer: a comprehensive review

  • Anil Arya
  • A. L. SharmaEmail author
Review
  • 116 Downloads

Abstract

Encouraged by the first report of ionic conductivity in 1973 and the consequent boom for the need of clean and green renewable energy resources, there has been a marked increase toward R&D of polymer electrolytes cum separator for energy storage devices. The most suitable alternative to the conventional energy storage devices is battery and it has the potential to fulfill the energy demand and could be used for storing energy produced from different alternative resources, i.e., wind/hydro/solar energy. Electrolyte is a key component of battery that plays a crucial role in its overall performance. The draft of the article is an attempt to present a coherent yet concise review of Li, Na, and Mg batteries using polymer electrolytes. The main topics given focus in this review are an introduction to properties shaping the polymer electrolytes, types of polymer electrolytes, and properties of constituents of polymer electrolytes (polymer host, salt, solvent, ionic liquid, plasticizer, nanofiller, nanoclay, nanorod, nanowire). The approaches to enhance the electrochemical properties are presented with a suitable ion transport mechanism. A special section is introduced to cover dendrite growth and strategies to suppress it. Important preparation methods and characterization techniques are introduced. The synopses of the experimental investigations are presented for ionic liquid/gel/composite polymer electrolytes. Finally, the future outlook highlights the further development for the next-generation energy storage devices.

Keywords

Energy storage/conversion devices Polymer electrolyte Preparation techniques Characterization techniques Rechargeable batteries 

Notes

Funding information

One of the authors (AA) is thankful to the Central University of Punjab for providing the fellowship. The authors acknowledge the financial support from the UGC Start-up grant (GP-25).

References

  1. 1.
    Huang H, Ding F, Zhong H, Li H, Zhang W, Liu X, Xu Q (2018) Nano-SiO2-embedded poly (propylene carbonate)-based composite gel polymer electrolyte for lithium–sulfur batteries. J Mater Chem A 6(20):9539–9549CrossRefGoogle Scholar
  2. 2.
    Hasa I, Hassoun J, Passerini S (2017) Nanostructured Na-ion and Li-ion anodes for battery application: a comparative overview. Nano Res 10(12):3942–3969CrossRefGoogle Scholar
  3. 3.
    Tsao CH, Su HM, Huang HT, Kuo PL, Teng H (2019) Immobilized cation functional gel polymer electrolytes with high lithium transference number for lithium ion batteries. J Membr Sci 572:382–389CrossRefGoogle Scholar
  4. 4.
    Saykar NG, Pilania RK, Banerjee I, Mahapatra S (2018) Synthesis of NiO-Co3O4 nano-sheets and its temperature dependent supercapacitive behaviour. J Phys D Appl Phys 55:475501CrossRefGoogle Scholar
  5. 5.
    Mahapatra SK, Saykar N, Banerjee I, Hobson PR, Sharma AK, Ray AK (2018) Synthesis and dielectric characterisation of triiodide perovskite methylammonium lead iodide for energy applications. J Mater Sci Mater Electron 29:18693–18698CrossRefGoogle Scholar
  6. 6.
    Mirzaeian M, Abbas Q, Ogwu A et al (2017) Electrode and electrolyte materials for electrochemical capacitors. Int J Hydrog Energy 42:25565–25587CrossRefGoogle Scholar
  7. 7.
    Gogotsi Y, Penner RM (2018) Energy storage in nanomaterials—capacitive, pseudocapacitive, or battery-like? ACS Nano 12:2081–2083CrossRefPubMedGoogle Scholar
  8. 8.
    Armand M (1980) Intercalation electrodes. In: Murphy DW, Broadhead J, Steele BCH (eds) Materials for advanced batteries. Plenum, New York, p 145CrossRefGoogle Scholar
  9. 9.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0< x<−1): a new cathode material for batteries of high energy density. Mater Res Bull 15(6):783–789CrossRefGoogle Scholar
  10. 10.
    Gao J, Shi S-Q, Li H (2016) Brief overview of electrochemical potential in lithium ion batteries. Chin Phys B 25:018210CrossRefGoogle Scholar
  11. 11.
    Miller TF, Wang ZG, Coates GW, Balsara NP (2017) Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries. Acc Chem Res 50:590–593CrossRefPubMedGoogle Scholar
  12. 12.
    Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S (2018) Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J Power Sources 382:176–178CrossRefGoogle Scholar
  13. 13.
    Schnell J, Günther T, Knoche T et al (2018) All-solid-state lithium-ion and lithium metal batteries—paving the way to large-scale production. J Power Sources 382:160–175CrossRefGoogle Scholar
  14. 14.
    Kariatsumari K (2010) Toyota announces 4-layer all-solid-state battery (2010) Available at: http://techon.nikkeibp.co.jp/english/NEWS_EN/20101122/187553/
  15. 15.
    Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025CrossRefGoogle Scholar
  16. 16.
    Lin X, Salari M, Arava LMR et al (2016) High temperature electrical energy storage: advances, challenges, and frontiers. Chem Soc Rev 45:5848–5887CrossRefPubMedGoogle Scholar
  17. 17.
    Sawicki M, Shaw LL (2015) Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv 5:53129–53154CrossRefGoogle Scholar
  18. 18.
    Tarascon JM, Masquelier C, Croguennec L, Patoux S (2017) A promising new prototype of battery. http://www2.cnrs.fr/en/2659
  19. 19.
    Bauer A, Song J, Vail S et al (2018) The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv Energy Mater 8:1702869CrossRefGoogle Scholar
  20. 20.
    Che H, Chen S, Xie Y et al (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10:1075–1101CrossRefGoogle Scholar
  21. 21.
    Ponrouch A, Monti D, Boschin A et al (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3:22–42CrossRefGoogle Scholar
  22. 22.
    Swiss National Science Foundation (SNSF). Sodium, magnesium to replace lithium in batteries. ScienceDaily. Science Daily, 2 May 2017Google Scholar
  23. 23.
    Canepa P, Bo SH, Sai Gautam G et al (2017) High magnesium mobility in ternary spinel chalcogenides. Nat Commun 8:1759CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Song J, Sahadeo E, Noked M, Lee SB (2016) Mapping the challenges of magnesium battery. J Phys Chem Lett 7:1736–1749CrossRefPubMedGoogle Scholar
  25. 25.
    Arthur TS, Kato K, Germain J, Guo J et al (2015) Amorphous V2O5–P2O5 as high-voltage cathodes for magnesium batteries. Chem Commun 51(86):15657–15660CrossRefGoogle Scholar
  26. 26.
    Yoo HD, Shterenberg I, Gofer Y et al (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279CrossRefGoogle Scholar
  27. 27.
    Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013CrossRefGoogle Scholar
  28. 28.
    Tian H, Gao T, Li X et al (2017) High power rechargeable magnesium/iodine battery chemistry. Nat Commun 8:14083CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Aurbach D, Lu Z, Schechter A et al (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727CrossRefPubMedGoogle Scholar
  30. 30.
    Nuli Y, Yang J, Li Y, Wang J (2010) Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem Commun 46:3794–3796CrossRefGoogle Scholar
  31. 31.
    Shterenberg I, Salama M, Gofer Y et al (2014) The challenge of developing rechargeable magnesium batteries. MRS Bull 39:453–460CrossRefGoogle Scholar
  32. 32.
    Cheng Y, Shao Y, Raju V, Ji X et al (2016) Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv Funct Mater 26(20):3446–3453CrossRefGoogle Scholar
  33. 33.
    Bertasi F, Hettige C, Sepehr F et al (2015) A key concept in magnesium secondary battery electrolytes. Chem Sus Chem 8(18):3069–3076CrossRefGoogle Scholar
  34. 34.
    Kubota K, Komaba S (2015) Review—Practical issues and future perspective for Na-ion batteries. J Electrochem Soc 162:A2538–A2550CrossRefGoogle Scholar
  35. 35.
    Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279CrossRefGoogle Scholar
  36. 36.
    Goodenough JB, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688–6694CrossRefGoogle Scholar
  37. 37.
    Zhong C, Deng Y, Hu W et al (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539CrossRefPubMedGoogle Scholar
  38. 38.
    Bandara TMWJ, Fernando HDNS, Furlani M et al (2016) Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells. Phys Chem Chem Phys 18:10873–10881CrossRefPubMedGoogle Scholar
  39. 39.
    Hu Y, Sun X, Ahn BY et al (2014) Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2:10712–10738CrossRefGoogle Scholar
  40. 40.
    Gwon H, Hong J, Kim H et al (2014) Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 7:538CrossRefGoogle Scholar
  41. 41.
    Chen R, Qu W, Guo X et al (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3:487–516CrossRefGoogle Scholar
  42. 42.
    Stoeva Z, Martin-Litas I, Staunton E et al (2003) Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. J Am Chem Soc 1250:4619–4626CrossRefGoogle Scholar
  43. 43.
    Sim LN, Sentanin FC, Pawlicka A et al (2017) Development of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane)sulfonimide for application in electrochromic device. Electrochim Acta 229:22–30CrossRefGoogle Scholar
  44. 44.
    Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51:045504CrossRefGoogle Scholar
  45. 45.
    Edman L (2000) Ion association and ion solvation effects at the crystalline−amorphous phase transition in PEO−LiTFSI. J Phys Chem B 104:7254–7258CrossRefGoogle Scholar
  46. 46.
    Tang C, Hackenberg K, Fu Q et al (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12:1152–1156CrossRefPubMedGoogle Scholar
  47. 47.
    Bar N, Basak P, Tsur Y (2017) Vibrational and impedance spectroscopic analyses of semi-interpenetrating polymer networks as solid polymer electrolytes. Phys Chem Chem Phys 19:14615–14624CrossRefPubMedGoogle Scholar
  48. 48.
    Norman Greenwood N, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  49. 49.
    Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I using electrical and dielectric measurements. Solid State Ionics 189:63–68CrossRefGoogle Scholar
  50. 50.
    Kato Y, Watanabe M, Sanui K, Ogata N (1990) Ionic transport number of network PEO electrolytes. Solid State Ionics 40–41:632–636CrossRefGoogle Scholar
  51. 51.
    Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146Google Scholar
  52. 52.
    MacCallum JR, Vincent CA (eds) (1989) Polymer electrolyte reviews (vol. 2). Springer, LondonGoogle Scholar
  53. 53.
    Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001CrossRefGoogle Scholar
  54. 54.
    Ratner MA, Johansson P, Shriver DF (2000) Polymer electrolytes: ionic transport mechanisms and relaxation coupling. MRS Bull 25:31–37CrossRefGoogle Scholar
  55. 55.
    Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Soc Chem Am J 77:3701–3707CrossRefGoogle Scholar
  56. 56.
    Watanabe M, Ogata N (1988) Ionic conductivity of polymer electrolytes and future applications. Br Polym J 20:181–192CrossRefGoogle Scholar
  57. 57.
    Baril D (1997) Electrochemistry of liquids vs. solids: polymer electrolytes. Solid State Ionics 94:35–47CrossRefGoogle Scholar
  58. 58.
    Bandara TMWJ, Mellander BE (2011) In ionic liquids: theory, properties, new approaches. In: A Kokorin (ed) InTech Janeza Trdine 9, Croatia, p 383Google Scholar
  59. 59.
    Jonsson M, Welch K, Hamp S et al (2006) Bacteria counting with impedance spectroscopy in a micro probe station. J Phys Chem B 110:10165–10169CrossRefPubMedGoogle Scholar
  60. 60.
    Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867CrossRefPubMedGoogle Scholar
  61. 61.
    Petrowsky M, Frech R (2008) Concentration dependence of ionic transport in dilute organic electrolyte solutions. J Phys Chem B 112:8285–8290CrossRefPubMedGoogle Scholar
  62. 62.
    Ericson H, Svanberg C, Brodin A et al (2000) Poly (methyl methacrylate)-based protonic gel electrolytes: a spectroscopic study. Electrochim Acta 45:1409–1414CrossRefGoogle Scholar
  63. 63.
    Agrawal RC (1999) Dc polarisation: an experimental tool in the study of ionic conductors. Ind J Pure Appl Phys 37:294–301Google Scholar
  64. 64.
    Maranas JK (2012) Polyelectrolytes for batteries: current state of understanding. In polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells. ACS Symp Ser 1096:1–17CrossRefGoogle Scholar
  65. 65.
    Merhawi A, Subrahmanyam AR, Siva Kumar J (2016) Ionic conductivity and transport properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes. Chem Phys Lett 658:240–247CrossRefGoogle Scholar
  66. 66.
    Sharma AL, Thakur A (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer-clay nanocomposites. Appl Polym Sci 118:2743–2753CrossRefGoogle Scholar
  67. 67.
    Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics 19:795–809CrossRefGoogle Scholar
  68. 68.
    Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328CrossRefGoogle Scholar
  69. 69.
    Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745CrossRefGoogle Scholar
  70. 70.
    Wu GM, Lin SJ, Yang CC (2006) Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J Membr Sci 275:127–133CrossRefGoogle Scholar
  71. 71.
    Yadav N, Mishra K, Hashmi SA (2017) Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor. Electrochim Acta 235:570–582CrossRefGoogle Scholar
  72. 72.
    Deng F, Wang X, He D et al (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membr Sci 491:82–89CrossRefGoogle Scholar
  73. 73.
    Liang B, Tang S, Jiang Q et al (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341CrossRefGoogle Scholar
  74. 74.
    Zhang Q, Liu K, Ding F, Liu X (2017) Recent advances in solid polymer electrolytes for lithium batteries. Nano Res 10:4139–4174CrossRefGoogle Scholar
  75. 75.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefPubMedGoogle Scholar
  76. 76.
    Maeshima H, Moriwake H, Kuwabara A, Fisher CAJ (2010) Quantitative evaluation of electrochemical potential windows of electrolytes for electric double-layer capacitors using ab initio calculations. J Electrochem Soc 157:A696–A701CrossRefGoogle Scholar
  77. 77.
    Halls MD, Tasaki K (2010) High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives. J Power Sources 195:1472–1478CrossRefGoogle Scholar
  78. 78.
    Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243CrossRefGoogle Scholar
  79. 79.
    Balbuena PB (2014) Electrolyte materials—issues and challenges. AIP Conf Proc 1597:82–97CrossRefGoogle Scholar
  80. 80.
    Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A Mater Energy Sustain 4:10038–10069CrossRefGoogle Scholar
  81. 81.
    Zhou B, He D, Hu J et al (2018) A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. J Mater Chem A 6:11725–11733CrossRefGoogle Scholar
  82. 82.
    Mural PKS, Rana MS, Madras G (2014) PE/PEO blends compatibilized by PE brush immobilized on MWNTs: improved interfacial and structural properties. RSC Adv 4:16250–16259CrossRefGoogle Scholar
  83. 83.
    Mindemark J, Lacey MJ, Bowden T et al (2018) Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143CrossRefGoogle Scholar
  84. 84.
    Jyothi NK, Kumar KV, Sundari GS et al (2016) Ionic conductivity and battery characteristic studies of a new PAN-based Na+ ion conducting gel polymer electrolyte system. Indian J Phys 90:289–296CrossRefGoogle Scholar
  85. 85.
    Tenhaeff W, Li Z (2018) Novel nitrile-bearing polymer electrolytes for lithium batteries. In Meeting Abs 1:7Google Scholar
  86. 86.
    Park CH, Park M, Yoo SI et al (2006) All solid state thin film lithium polymer batteries using spin coated polymer electrolytes. In Meeting Abs 4:205Google Scholar
  87. 87.
    Karan S, Sahu TB, Sahu M et al (2017) Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films:[PEO: Zn (CF3SO3)2]. Ionics 23:2721–2726CrossRefGoogle Scholar
  88. 88.
    Pandey GP, Hashmi SA, Agrawal RC (2008) Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ionics 179:543–549CrossRefGoogle Scholar
  89. 89.
    Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540CrossRefGoogle Scholar
  90. 90.
    Johansson A, Wendsjö A, Tegenfeldt J (1992) NMR spectroscopy of PEO-based polymer electrolytes. Electrochim Acta 37:1487–1489CrossRefGoogle Scholar
  91. 91.
    Capuano F, Croce F, Scrosati B (1991) Composite polymer electrolytes. J Electrochem Soc 138:1918–1922CrossRefGoogle Scholar
  92. 92.
    Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys Condens Matter 30:165402CrossRefPubMedGoogle Scholar
  93. 93.
    Hedvig P (1977) Dielectric spectroscopy of polymers Vol. 18. Wiley, New YorkGoogle Scholar
  94. 94.
    Di Noto V, Giffin GA, Vezzù K, Piga M, Lavina S (2012) Broadband dielectric spectroscopy: a powerful tool for the determination of charge transfer mechanisms in ion conductors. Wiley, Weinheim, pp 109–183Google Scholar
  95. 95.
    Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in the ion conducting polymer nanocomposite. Ionics 17:135–143CrossRefGoogle Scholar
  96. 96.
    Sadiq M, Arya A, Sharma AL (2017) Dielectric study of polymer nanocomposite films for energy storage applications, recent trends in materials and devices. Recent Trends in Materials and Devices, Springer International Publishing 178:389–396CrossRefGoogle Scholar
  97. 97.
    Karan NK, Pradhan DK, Thomas R, Natesan B, Katiyar RS (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179:689–696CrossRefGoogle Scholar
  98. 98.
    Klein RJ, Zhang S, Dou S, Jones BH, Colby RH, Runt J (2006) Modeling electrode polarization in dielectric spectroscopy: ion mobility and mobile ion concentration of single-ion polymer electrolytes. J Chem Phys 124(14):144903CrossRefPubMedGoogle Scholar
  99. 99.
    Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater Electron 29:17903–17920CrossRefGoogle Scholar
  100. 100.
    Roy A, Dutta B, Bhattacharya S (2016) Correlation of the average hopping length to the ion conductivity and ion diffusivity obtained from the space charge polarization in solid polymer electrolytes. RSC Adv 6(70):65434–65442CrossRefGoogle Scholar
  101. 101.
    Alamgir M, Abraham KM (1993) Li ion conductive electrolytes based on poly(vinyl chloride). J Electrochem Soc 140:L96–L97CrossRefGoogle Scholar
  102. 102.
    Uma T, Mahalingam T, Stimming U (2005) Solid polymer electrolytes based on poly(vinylchloride)-lithium sulfate. Mater Chem Phys 90:239–244CrossRefGoogle Scholar
  103. 103.
    Zhang W, Zhang Z, Wang X (2009) Investigation on surface molecular conformations and pervaporation performance of the poly(vinyl alcohol) (PVA) membrane. J Colloid Interface Sci 333:346–353CrossRefPubMedGoogle Scholar
  104. 104.
    Noor IS, Majid SR, Arof AK (2013) Poly(vinyl alcohol)-LiBOB complexes for lithium-air cells. Electrochim Acta 102:149–160CrossRefGoogle Scholar
  105. 105.
    Basha S, Rao MC (2018) Spectroscopic and electrochemical properties of [PVA/PVP]:[MgCl26H2O] blend polymer electrolyte films. Int J Polym Sci 2018:1–11Google Scholar
  106. 106.
    Idris NH, Rahman MM, Wang J-Z, Liu H-K (2012) Microporous gel polymer electrolytes for lithium rechargeable battery application. J Power Sources 201:294–300CrossRefGoogle Scholar
  107. 107.
    Rajendran S, Mahendran O, Kannan R (2002) Characterisation of [(1 − x) PMMA–xPVdF] polymer blend electrolyte with Li+ ion. Fuel 81:1077–1081CrossRefGoogle Scholar
  108. 108.
    Su’Ait MS, Ahmad A, Hamzah H, Rahman MYA (2009) Preparation and characterization of PMMA-MG49-LiClO4 solid polymeric electrolyte. J Phys D Appl Phys 42:055410CrossRefGoogle Scholar
  109. 109.
    Zheng M, Gu M, Jin Y, Jin G (2000) Preparation, structure and properties of TiO2–PVP hybrid films. Mater Sci Eng B 77:55–59CrossRefGoogle Scholar
  110. 110.
    Saroj AL, Singh RK, Chandra S (2013) Studies on polymer electrolyte poly(vinyl) pyrrolidone (PVP) complexed with ionic liquid: effect of complexation on thermal stability, conductivity and relaxation behaviour. Mater Sci Eng B Solid State Mater Adv Technol 178:231–238CrossRefGoogle Scholar
  111. 111.
    Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14:589CrossRefGoogle Scholar
  112. 112.
    Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439–448CrossRefPubMedGoogle Scholar
  113. 113.
    Armand M, Duclot M (1978) French Patent 78 329 76Google Scholar
  114. 114.
    Arya A, Sharma AL, Sharma S, Sadiq M (2016) Role of low salt concentration on electrical conductivity in blend polymeric films. J Integr Sci Technol 4:17–20Google Scholar
  115. 115.
    Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629CrossRefPubMedGoogle Scholar
  116. 116.
    Bertasi F, Negro E, Vezzù K et al (2015) Single-ion-conducting nanocomposite polymer electrolytes for lithium batteries based on lithiated-fluorinated-iron oxide and poly(ethylene glycol) 400. Electrochim Acta 175:113–123CrossRefGoogle Scholar
  117. 117.
    Zhang W, Zhao Q, Yuan J (2018) Porous polyelectrolytes: the interplay of charge and pores for new functionalities. Angew Chem Int Ed 57:6754–6773CrossRefGoogle Scholar
  118. 118.
    Travas-Sejdic J, Steiner R, Desilvestro J, Pickering P (2001) Ion conductivity of novel polyelectrolyte gels for secondary lithium-ion polymer batteries. Electrochim Acta 46(10–11):1461–1466CrossRefGoogle Scholar
  119. 119.
    Sun J, MacFarlane DR, Forsyth M (2002) Lithium polyelectrolyte–ionic liquid systems. Solid State Ionics 147(3–4):333–339CrossRefGoogle Scholar
  120. 120.
    Saikia D, Wu CG, Fang J, Tsai LD, Kao HM (2014) Organic–inorganic hybrid polymer electrolytes based on polyether diamine, alkoxysilane, and trichlorotriazine: synthesis, characterization, and electrochemical applications. J Power Sources 269:651–660CrossRefGoogle Scholar
  121. 121.
    Koksbang R, Olsen II, Shackle D (1994) Review of hybrid polymer electrolytes and rechargeable lithium batteries. Solid State Ionics 69(3–4):320–335CrossRefGoogle Scholar
  122. 122.
    Blensdorf T, Joenathan A, Hunt M, Werner-Zwanziger U et al (2017) Hybrid composite polymer electrolytes: ionic liquids as a magic bullet for the poly (ethylene glycol)–silica network. J Mater Chem A 5(7):3493–3502CrossRefGoogle Scholar
  123. 123.
    Di Noto V (1997) A novel polymer electrolyte based on oligo (ethylene glycol) 600, K2PdCl4, and K3Fe(CN)6. J Mater Res 12:3393–3403CrossRefGoogle Scholar
  124. 124.
    Di Noto V (2000) Zeolitic inorganic−organic polymer electrolyte based on oligo (ethylene glycol) 600 K2PdCl4 and K3Co(CN)6. J Phys Chem B 104:10116–10125CrossRefGoogle Scholar
  125. 125.
    Skaarup S, West K, Zachau-Christiansen B, Popall M et al (1998) Towards solid state lithium batteries based on ORMOCER electrolytes. Electrochim Acta 43:1589–1592CrossRefGoogle Scholar
  126. 126.
    Popall M, Andrei M, Kappel J et al (1998) 1ORMOCERs as inorganic–organic electrolytes for new solid state lithium batteries and supercapacitors. Electrochim Acta 43:1155–1161CrossRefGoogle Scholar
  127. 127.
    Dahmouche K, Atik M, Mello NC, Bonagamba TJ et al (1997) Investigation of new ion-conducting ORMOLYTES: structure and properties. J Sol-Gel Sci Technol 8:711–715Google Scholar
  128. 128.
    Dahmouche K, Atik M, Mello NC et al (1998) New Li+ ion-conducting ormolytes. Sol Energy Mater Sol Cells 54:1–8CrossRefGoogle Scholar
  129. 129.
    Münchow V, Di Noto V, Tondello E (2000) Poly [(oligoethylene glycol) dihydroxytitanate] as organic–inorganic polymer-electrolytes. Electrochim Acta 45:1211–1221CrossRefGoogle Scholar
  130. 130.
    Noto VD, Barreca D, Furlan C, Armelao L (2000) Zeolitic inorganic–organic polymer electrolytes: a material based on poly (ethylene glycol) 600, SnCl4 and K4Fe (CN)6. Polym Adv Technol 11:108–121CrossRefGoogle Scholar
  131. 131.
    Di Noto V, Fauri M, Vittadello M, Lavina S, Biscazzo S (2001) Zeolitic inorganic–organic polymer electrolytes: synthesis, characterization and ionic conductivity of a material based on oligo (ethylene glycol) 600,(CH3) 2SnCl2 and K4Fe (CN)6. Electrochim Acta 46:1587–1594CrossRefGoogle Scholar
  132. 132.
    Di Noto V, Fauri M, Vittadello M, Lavina S, Biscazzo S (2002) Conductivity, thermal stability and morphology of a new Z-IOPE inorganic–organic network with the formula [FexSny (CH3) 2y (CN) zClv (C2nH4n+ 2 On+1) Kl]. Macromol Chem Phys 203:354–362CrossRefGoogle Scholar
  133. 133.
    Di Noto V, Zago V, Biscazzo S, Vittadello M (2003) Hybrid inorganic–organic polymer electrolytes: synthesis, FT-Raman studies and conductivity of {Zr [(CH2CH2O)8.7]ρ/(LiClO4)z}n network complexes. Electrochim Acta 48:541–554CrossRefGoogle Scholar
  134. 134.
    Vittadello M, Suarez S, Chung SH et al (2003) The first lithium zeolitic inorganic–organic polymer electrolyte based on PEG600, Li2PdCl4 and Li3Fe(CN)6: part II, thermal stability, morphology and ion conduction mechanism. Electrochim Acta 48:2227–2237CrossRefGoogle Scholar
  135. 135.
    Eftekhari A (2017) Supercapacitors utilising ionic liquids. Energy Storage Mater 9:47–69CrossRefGoogle Scholar
  136. 136.
    Eftekhari A, Liu Y, Chen P (2016) Different roles of ionic liquids in lithium batteries. J Power Sources 334:221–239CrossRefGoogle Scholar
  137. 137.
    Gupta H, Shalu, Balo L et al (2016) Effect of phosphonium based ionic liquid on structural, electrochemical and thermal behaviour of polymer poly(ethylene oxide) containing salt lithium bis(trifluoromethylsulfonyl)imide. RSC Adv 6:87878–87887CrossRefGoogle Scholar
  138. 138.
    Yongxin A, Xinqun C, Pengjian Z et al (2011) Improved properties of polymer electrolyte by ionic liquid PP1.3TFSI for secondary lithium ion battery. J Solid State Electrochem 16:383–389CrossRefGoogle Scholar
  139. 139.
    Balo L, Shalu, Gupta H et al (2017) Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim Acta 230:123–131CrossRefGoogle Scholar
  140. 140.
    Simonetti E, Carewska M, Di Carli M et al (2017) Towards improvement of the electrochemical properties of ionic liquid-containing polyethylene oxide-based electrolytes. Electrochim Acta 235:323–331CrossRefGoogle Scholar
  141. 141.
    Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy 42:7212–7219CrossRefGoogle Scholar
  142. 142.
    Appetecchi GB, Croce F, Scrosati B (1997) High-performance electrolyte membranes for plastic lithium batteries. J Power Sources 66:77–82CrossRefGoogle Scholar
  143. 143.
    Amaral FA, Dalmolin C, Canobre SC, Bocchi N et al (2007) Electrochemical and physical properties of poly (acrylonitrile)/poly (vinyl acetate)-based gel electrolytes for lithium ion batteries. J Power Sources 164:379–385CrossRefGoogle Scholar
  144. 144.
    Fuller J, Breda a C, Carlin RT (1997) Ionic liquid-polymer gel electrolytes. J Electrochem Soc 144:L67–L70CrossRefGoogle Scholar
  145. 145.
    Ma J, Chen B, Wang L, Cui G (2018) Progress and prospect on failure mechanisms of solid-state lithium batteries. J Power Sources 392:94–115CrossRefGoogle Scholar
  146. 146.
    Brissot C, Rosso M, Chazalviel JN et al (1998) In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim Acta 43:1569–1574CrossRefGoogle Scholar
  147. 147.
    Brissot C, Rosso M, Chazalviel JN et al (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81:925–929CrossRefGoogle Scholar
  148. 148.
    Dollé M, Sannier L, Beaudoin B et al (2002) Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem Solid-State Lett 5:A286–A289CrossRefGoogle Scholar
  149. 149.
    Rosso M, Brissot C, Teyssot A et al (2006) Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 51:5334–5340CrossRefGoogle Scholar
  150. 150.
    Harry KJ, Hallinan DT, Parkinson DY et al (2014) Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat Mater 13:69–73CrossRefPubMedGoogle Scholar
  151. 151.
    Yang L, Wang Z, Feng Y et al (2017) Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–electrolyte interface for solid state lithium-ion batteries. Adv Energy Mater 7:1701437CrossRefGoogle Scholar
  152. 152.
    Wang C, Yang Y, Liu X et al (2017) Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl Mater Interfaces 9:13694–13702CrossRefPubMedGoogle Scholar
  153. 153.
    Crowther O, West AC (2008) Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc 155:A806–A811CrossRefGoogle Scholar
  154. 154.
    Wu B, Liu Q, Mu D et al (2016) Suppression of lithium dendrite growth by introducing a low reduction potential complex cation in the electrolyte. RSC Adv 6:51738–51746CrossRefGoogle Scholar
  155. 155.
    Orsini F, Du Pasquier A, Beaudoin B et al (1998) In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. J Pow Sources 76:19–29CrossRefGoogle Scholar
  156. 156.
    Shimizu M, Umeki M, Arai S (2018) Suppressing the effect of lithium dendritic growth by the addition of magnesium bis(trifluoromethanesulfonyl)amide. Phys Chem Chem Phys 20:1127–1133CrossRefPubMedGoogle Scholar
  157. 157.
    Kim SH, Choi KH, Cho SJ et al (2013) Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J Mater Chem A 1:4949–4955CrossRefGoogle Scholar
  158. 158.
    Tripathi AK, Singh RK (2018) Development of ionic liquid and lithium salt immobilized MCM-41 quasi solid-liquid electrolytes for lithium batteries. J Energy Storage 15:283–291CrossRefGoogle Scholar
  159. 159.
    Armand MB, Chabagno JM, Duclot MJ (1978) Second international conference on solid electrolyte, St. Andrews, paper 6.5Google Scholar
  160. 160.
    Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473CrossRefPubMedGoogle Scholar
  161. 161.
    Ilott AJ, Mohammadi M, Chang HJ et al (2016) Real-time 3D imaging of microstructure growth in battery cells using indirect MRI. Proc Natl Acad Sci 113:10779–10784CrossRefPubMedGoogle Scholar
  162. 162.
    Armand MB, Bruce PG, Forsyth M et al (2011) Polymer electrolytes. Wiley, New JerseyGoogle Scholar
  163. 163.
    Croce F, Scrosati B (1993) Interfacial phenomena in polymer-electrolyte cells: lithium passivation and cycleability. J Power Sources 43:9–19CrossRefGoogle Scholar
  164. 164.
    Borghini MC, Mastragostino M, Passerini S, Scrosati B (1995) Electrochemical properties of polyethylene oxide-Li [(CF3SO2)2N]-gamma-LiAlO2 composite polymer electrolytes. J Electrochem Soc 142:2118–2121CrossRefGoogle Scholar
  165. 165.
    Angulakshmi N, Kar GP, Bose S et al (2017) A high-performance BaTiO3-grafted-GO-laden poly (ethylene oxide)-based membrane as an electrolyte for all-solid lithium-batteries. Mater Chem Front 1:269–277CrossRefGoogle Scholar
  166. 166.
    Croce F, Settimi L, Scrosati B et al (2006) Nanocomposite, PEO-LiBOB polymer electrolytes for low temperature, lithium rechargeable batteries. J New Mater Electrochem Syst 9:3–9Google Scholar
  167. 167.
    Do NST, Schaetzl DM, Dey B et al (2012) Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: nanorods versus nanospheres. J Phys Chem C 116:21216–21223CrossRefGoogle Scholar
  168. 168.
    Xiong H, Zhao X, Chen J (2001) New polymer-inorganic nanocomposites: PEO-ZnO and PEO-ZnO-LiClO4 films. J Phys Chem B 105:10169–10174CrossRefGoogle Scholar
  169. 169.
    Nan CW, Fan L, Lin Y et al (2003) Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett 91:266104CrossRefPubMedGoogle Scholar
  170. 170.
    Di Noto V, Bettiol M, Bassetto F et al (2012) Hybrid inorganic-organic nanocomposite polymer electrolytes based on Nafion and fluorinated TiO2 for PEMFCs. Int J Hydrog Energy 37:6169–6181CrossRefGoogle Scholar
  171. 171.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRefGoogle Scholar
  172. 172.
    Di Noto V, Lavina S, Giffin GA et al (2011) Polymer electrolytes: present, past and future. Electrochim Acta 57:4–13CrossRefGoogle Scholar
  173. 173.
    Anadão P, Sato LF, Wiebeck H, Valenzuela-Díaz FR (2010) Montmorillonite as a component of polysulfone nanocomposite membranes. Appl Clay Sci 48:127–132CrossRefGoogle Scholar
  174. 174.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials and uses of a new class of materials. Mater Sci Eng 28:1–63CrossRefGoogle Scholar
  175. 175.
    Tan B, Thomas NL (2016) A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J Membr Sci 514:595–612CrossRefGoogle Scholar
  176. 176.
    Das S, Ghosh A (2015) Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Adv 5:027125CrossRefGoogle Scholar
  177. 177.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  178. 178.
    Abdollahi S, Ehsani M, Morshedian J et al (2017) Structural and electrochemical properties of PEO/PAN nanofibrous blends: prediction of graphene localization. Polym Compos 39(10):3626–3635CrossRefGoogle Scholar
  179. 179.
    Choi BK, Kim YW, Shin HK (2000) Ionic conduction in PEO-PAN blend polymer electrolytes. Electrochim Acta 45:1371–1374CrossRefGoogle Scholar
  180. 180.
    Arya A, Sharma S, Sharma AL et al (2016) Structural and dielectric behavior of blend polymer electrolyte based on PEO-PAN+ LiPF6. Asian J Eng Appl Technol 5:4–7Google Scholar
  181. 181.
    Arya A, Sadiq M, Sharma AL (2018) Structural, electrical and ion transport properties of free standing blended solid polymeric thin films. Polym Bull.  https://doi.org/10.1007/s00289-018-2645-y
  182. 182.
    Arya A, Sharma AL (2019) Temperature and salt-dependent dielectric properties of blend solid polymer electrolyte complexed with LiBOB. Macromol Res.  https://doi.org/10.1007/s13233-019-7077-5
  183. 183.
    Pitawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ionics 178:885–888CrossRefGoogle Scholar
  184. 184.
    Lu W, Fadeev AG, Qi B et al (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987CrossRefPubMedGoogle Scholar
  185. 185.
    Watanabe M, Thomas ML, Zhang S et al (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190–7239CrossRefPubMedGoogle Scholar
  186. 186.
    Bhatt C, Swaroop R, Arya A et al (2015) Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mater Sci Eng B 5:418–434Google Scholar
  187. 187.
    Jayathilaka PARD, Dissanayake MAKL, Albinson I, Mellander B-E (2002) Effect of Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSO polymer electrolyte system. Electrochim Acta 47:3257–3268CrossRefGoogle Scholar
  188. 188.
    Forsyth M, MacFarlane DR, Best A et al (2002) The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics 147:203–211CrossRefGoogle Scholar
  189. 189.
    Lin C, Hung C, Venkateswarlu M, Hwang B (2005) Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J Pow Sources 146:397–401CrossRefGoogle Scholar
  190. 190.
    Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander B-E (2014) Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28CrossRefGoogle Scholar
  191. 191.
    Choi NS, Lee YM, Lee BH et al (2004) Nanocomposite single ion conductor based on organic-inorganic hybrid. Solid State Ionics 167:293–299CrossRefGoogle Scholar
  192. 192.
    Sun J, Bayley P, MacFarlane DR, Forsyth M (2007) Gel electrolytes based on lithium modified silica nano-particles. Electrochim Acta 52:7083–7090CrossRefGoogle Scholar
  193. 193.
    Aydın H, Bozkurt A (2014) Nanocomposite polymer electrolytes comprising PVA-graft-PEGME/TiO2 for Li-ion batteries. J Mater Res 29:625–632CrossRefGoogle Scholar
  194. 194.
    Kurian M, Galvin ME, Trapa PE et al (2005) Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications. Electrochim Acta 50:2125–2134CrossRefGoogle Scholar
  195. 195.
    Sharma AL, Thakur AK (2009) Polymer–ion–clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16:339–350CrossRefGoogle Scholar
  196. 196.
    Sharma AL, Thakur AK (2011) Polymer matrix-clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46:1916–1931CrossRefGoogle Scholar
  197. 197.
    Sharma AL, Thakur AK (2015) Relaxation behavior in clay-reinforced polymer nanocomposites. Ionics 21:1561–1575CrossRefGoogle Scholar
  198. 198.
    Fullerton-Shirey SK, Maranas JK (2010) Structure and mobility of PEO/LiClO4 solid polymer electrolytes filled with Al2O3 nanoparticles. J Phys Chem C 114:9196–9206CrossRefGoogle Scholar
  199. 199.
    Sheng O, Jin C, Luo J et al (2018) Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett 18:3104–3112CrossRefPubMedGoogle Scholar
  200. 200.
    Arya A, Nilesh SG, Sharma AL (2018) Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136:47361CrossRefGoogle Scholar
  201. 201.
    Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002CrossRefGoogle Scholar
  202. 202.
    Xue Z, He D, Xie X (2015) Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253CrossRefGoogle Scholar
  203. 203.
    Tortorella N, Beatty CL (2008) Morphology and crystalline properties of impact-modified polypropylene blends. Polym Eng Sci 48:1476–1486CrossRefGoogle Scholar
  204. 204.
    Xue W, Miao L, Qie L et al (2017) Gravimetric and volumetric energy densities of lithium-sulfur batteries. Curr Opin Electrochem 6:92–99CrossRefGoogle Scholar
  205. 205.
    Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45:1501–1508CrossRefGoogle Scholar
  206. 206.
    B. Puthirath A, Patra S, Pal S, et al (2017) Transparent flexible lithium ion conducting solid polymer electrolyte. J Mater Chem A 5:11152–11162Google Scholar
  207. 207.
    Shalu VKS, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mate Chem C 3:7305–7318CrossRefGoogle Scholar
  208. 208.
    Wang Z, Hu Y, Chen L (2005) Some studies on electrolytes for lithium ion batteries. J Pow Sources 146:51–57CrossRefGoogle Scholar
  209. 209.
    Arya A, Sadiq M, Sharma AL (2017) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 24:2295–2319CrossRefGoogle Scholar
  210. 210.
    Pradhan DK, Choudhary RNP, Samantaray BK et al (2007) Effect of plasticizer on structural and electrical properties of polymer nanocompsoite electrolytes. Int J Electrochem Sc 2:861–871Google Scholar
  211. 211.
    Prabakaran P, Manimuthu RP, Gurusamy S, Sebasthiyan E (2017) Plasticized polymer electrolyte membranes based on PEO/PVdF-HFP for use as an effective electrolyte in lithium-ion batteries. Chin J Polym Sci 35:407–421CrossRefGoogle Scholar
  212. 212.
    Flora XH, Ulaganathan M, Rajendran S (2013) Role of different plasticizers in Li-ion conducting poly (acrylonitrile)-poly (methyl methacrylate) hybrid polymer electrolyte. Int J Polym Mater Polym Biomater 62:737–742CrossRefGoogle Scholar
  213. 213.
    Liu W, Liu N, Sun J et al (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745CrossRefPubMedGoogle Scholar
  214. 214.
    Liu W, Lee SW, Lin D et al (2017) Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2:17035CrossRefGoogle Scholar
  215. 215.
    Liu W, Lin D, Sun J et al (2016) Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10:11407–11413CrossRefPubMedGoogle Scholar
  216. 216.
    Park JH, Cho JH, Park W et al (2010) Close-packed SiO2/poly (methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries. J Pow Sources 195:8306–8310CrossRefGoogle Scholar
  217. 217.
    Hwang JJ, Liu HJ (2002) Influence of organophilic clay on the morphology, plasticizer-maintaining ability, dimensional stability, and electrochemical properties of gel polyacrylonitrile (PAN) nanocomposite electrolytes. Macromolecules 35:7314–7319CrossRefGoogle Scholar
  218. 218.
    Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend-based nanocomposite electrolytes. J Appl Polym Sci 132:3Google Scholar
  219. 219.
    Choudhary S, Sengwa RJ (2011) Dielectric spectroscopy and confirmation of ion conduction mechanism in direct melt compounded hot-press polymer nanocomposite electrolytes. Ionics 17:811–819CrossRefGoogle Scholar
  220. 220.
    Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly (vinyl alcohol)/poly (ethylene oxide) blend nanocomposites. Compos Sci Technol 70:1621–1627CrossRefGoogle Scholar
  221. 221.
    Ubowska A (2010) Montmorillonite as a polyurethane foams flame retardant. Arch Combust 30:459–462Google Scholar
  222. 222.
    Brindley GW (1971) Miner Soc Jpn Spec Pap 1:70Google Scholar
  223. 223.
    Whittingham MS, Jacobson AJ (1982) Intercalation chemistry. Academic, LondonGoogle Scholar
  224. 224.
    Lagaly G (1986) Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22:43–51CrossRefGoogle Scholar
  225. 225.
    Bala P, Samantaray BK, Srivastava SK, Haeuseler H (2000) Microstructural parameters and layer disorder accompanying dehydration transformation in Na-montmorillonite. Zeitschrift fur Kristallographie 215:235–239Google Scholar
  226. 226.
    Pramanik M, Srivastava SK, Samantaray BK et al (2001) Preparation and properties of ethylene vinyl acetate-clay hybrids. J Mater Sci Lett 20:1377–1380CrossRefGoogle Scholar
  227. 227.
    Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Polym Int 7:319–327Google Scholar
  228. 228.
    Gray FM (1997) Polymer electrolytes. Royal Society of Chemistry, LondonGoogle Scholar
  229. 229.
    Di Noto V, Lavina S, Longo D, Vidali M (1998) A novel electrolytic complex based on δ-MgCl2 and poly (ethylene glycol) 400. Electrochim Acta 43:1225–1237CrossRefGoogle Scholar
  230. 230.
    Paulmer RDA, Kulkarni AR (1994) Synthesis and conductivity behaviour of ternary PEO-PPG-NaClO4 amorphous blends. Solid State Ionics 68:243–247CrossRefGoogle Scholar
  231. 231.
    Kumar GG, Munichandraiah N (1999) Reversibility of Mg/Mg2+ couple in a gel polymer electrolyte. Electrochim Acta 44:2663–2666CrossRefGoogle Scholar
  232. 232.
    Yang LL, McGhie AR, Farrington GC (1986) Ionic conductivity in complexes of poly (ethylene oxide) and MgCl2. J Electrochem Soc 133:1380–1385CrossRefGoogle Scholar
  233. 233.
    Patrick A, Glasse M, Latham R, Linford R (1986) Novel solid state polymeric batteries. Solid State Ionics 18:1063–1067CrossRefGoogle Scholar
  234. 234.
    Ohno H, Ito Y (1990) Solubility of methacrylic acid alkali metal salts in polyethylene oxide and cation conductivity after polymerization. Polym Adv Technol 1:335–339CrossRefGoogle Scholar
  235. 235.
    Lightfoot P, Mehta MA, Bruce PG (1992) Structure of the poly (ethylene oxide)–sodium perchlorate complex PEO3–NaClO4 from powder X-ray diffraction data. J Mater Chem 2:379–381CrossRefGoogle Scholar
  236. 236.
    Ikeda S, Mori Y, Furuhashi Y, Masuda H, Yamamoto O (1999) Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications. J Power Sources 81:720–723CrossRefGoogle Scholar
  237. 237.
    Ikeda S, Mori Y, Furuhashi Y, Masuda H (1999) Multivalent cation conductive solid polymer electrolytes using photo-cross-linked polymers: II. Magnesium and zinc trifluoromethanesulfonate systems. Solid State Ionics 121:329–333CrossRefGoogle Scholar
  238. 238.
    Di Noto V, Münchow V, Vittadello M, Collet JC, Lavina S (2002) Synthesis, characterization and conductivity studies of Li and Mg polymer electrolytes based on esters of ethylenediaminetetraacetic acid and PEG400. Solid State Ionics 147:397–402CrossRefGoogle Scholar
  239. 239.
    Manjuladevi R, Selvasekarapandian S, Thamilselvan M et al (2018) A study on blend polymer electrolyte based on poly (vinyl alcohol)-poly (acrylonitrile) with magnesium nitrate for magnesium battery. Ionics 24:3493–3506CrossRefGoogle Scholar
  240. 240.
    Kumar KK, Ravi M, Pavani Y et al (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys B Condens Matter 406:1706–1712CrossRefGoogle Scholar
  241. 241.
    Jinisha B, Anilkumar KM, Manoj M et al (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222CrossRefGoogle Scholar
  242. 242.
    Ramamohan K, Umadevi C, Achari VBS, Sharma AK (2013) Conductivity studies on (PVC/PEMA) solid polymer blend electrolyte films complexed with NaIO4. Int J Plastics Technol 17:139–148CrossRefGoogle Scholar
  243. 243.
    Rajendran S, Sivakumar P, Babu RS (2007) Studies on the salt concentration of a PVdF-PVC based polymer blend electrolyte. J Pow Sources 164:815–821CrossRefGoogle Scholar
  244. 244.
    Manjuladevi R, Thamilselvan M, Selvasekarapandian S et al (2017) Mg-ion conducting blend polymer electrolyte based on poly (vinyl alcohol)-poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100CrossRefGoogle Scholar
  245. 245.
    Tamilselvi P, Hema M (2014) Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte. Phys B Condens Matter 437:53–57CrossRefGoogle Scholar
  246. 246.
    Gebreyesus MA, Purushotham Y, Kumar JS (2016) Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate). Heliyon 2:e00134CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Basha SKS, Sundari GS, Kumar KV, Rao MC (2018) Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery application. Polym Bull 75:925–945CrossRefGoogle Scholar
  248. 248.
    Roy A, Dutta B, Bhattacharya S (2017) Ion dynamics in NaBF4 salt-complexed PVC–PEO blend polymer electrolytes: correlation between average ion hopping length and network structure. Ionics 23:3389–3399CrossRefGoogle Scholar
  249. 249.
    Chapi S, Raghu S, Devendrappa H (2016) Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 22:803–814CrossRefGoogle Scholar
  250. 250.
    Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly(ethylene oxide) (PEO)–poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262CrossRefGoogle Scholar
  251. 251.
    Flora XH, Ulaganathan M, Rajendran S (2012) Influence of lithium salt concentration on PAN-PMMA blend polymer electrolytes. Int J Electrochem Sci 7:7451–7462Google Scholar
  252. 252.
    Thayumanasundaram S, Rangasamy VS, De Greef N, Seo JW, Locquet JP (2015) Hybrid polymer electrolytes based on a poly (vinyl alcohol)/poly (acrylic acid) blend and a pyrrolidinium-based ionic liquid for lithium-ion batteries. Eur J Inorg Chem 2015(7):1290–1299CrossRefGoogle Scholar
  253. 253.
    Wang J, Song S, Muchakayala R et al (2017) Structural, electrical, and electrochemical properties of PVA-based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics 23:1759–1769CrossRefGoogle Scholar
  254. 254.
    Pal P, Ghosh A (2015) Dynamics and relaxation of charge carriers in poly (methylmethacrylate)-based polymer electrolytes embedded with ionic liquid. Phys Rev E 92:062603CrossRefGoogle Scholar
  255. 255.
    Li Y, Wong KW, Dou Q, Ng KM (2016) A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries. J Mater Chem A 4:18543–18550CrossRefGoogle Scholar
  256. 256.
    Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/ionic liquid [EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168CrossRefGoogle Scholar
  257. 257.
    Li Y, Wai Wong K, Dou Q et al (2017) A highly elastic and flexible solid-state polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium batteries. New J Chem 41:13096–13103CrossRefGoogle Scholar
  258. 258.
    Pagot G, Bertasi F, Vezzù K, Nawn G, Pace G, Nale A et al (2018) Correlation between properties and conductivity mechanism in poly (vinyl alcohol)-based lithium solid electrolytes. Solid State Ionics 320:177–185CrossRefGoogle Scholar
  259. 259.
    Arunkumar R, Babu RS, Usha Rani M, Rajendran S (2017) Influence of plasticizer on ionic conductivity of PVC-PBMA polymer electrolytes. Ionics 23:3097–3109CrossRefGoogle Scholar
  260. 260.
    Abarna S, Hirankumar G (2017) Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity. Ionics 23:1733–1743CrossRefGoogle Scholar
  261. 261.
    Rao M, Geng X, Li X et al (2012) Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte. J Power Sources 212:179–185CrossRefGoogle Scholar
  262. 262.
    Watanabe M, Kanba M, Matsuda H et al (1981) High lithium ionic conductivity of polymeric solid electrolytes. Macromol Chem Rapid Commun 2:741–744CrossRefGoogle Scholar
  263. 263.
    Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B Solid State Mater Adv Technol 85:11–15CrossRefGoogle Scholar
  264. 264.
    Golodnitsky D Effect of plasticizers on the CPE conductivity and on the Li-CPE interface. Solid State Ionics 85:231–238Google Scholar
  265. 265.
    Kim D-W, Kim Y-R, Park J-K, Moon S-I (1998) Electrical properties of the plasticized polymer electrolytes based on acrylonitrile-methyl methacrylate copolymers. Solid State Ionics 106:329–337CrossRefGoogle Scholar
  266. 266.
    Rhoo HJ, Kim HT, Park JK, Hwang TS (1997) Ionic conduction in plasticized blend polymer electrolytes. Electrochim Acta 42:1571–1579CrossRefGoogle Scholar
  267. 267.
    Subban RHY, Arof AK (2004) Plasticiser interactions with polymer and salt in PVC-LiCF3SO3-DMF electrolytes. Eur Polym J 40:1841–1847CrossRefGoogle Scholar
  268. 268.
    Subban RHY, Ahmad AH, Kamarulzaman N et al (2005) Effects of plasticiser on the lithium ionic conductivity of polymer electrolyte PVC-LiCF3SO3. Ionics 11:442–445CrossRefGoogle Scholar
  269. 269.
    Ramesh S, Arof AK (2001) Structural, thermal and electrochemical cell characteristics of poly (vinyl chloride)-based polymer electrolytes. J Power Sources 99:41–47CrossRefGoogle Scholar
  270. 270.
    Choi NS, Park JK (2001) New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochim Acta 46:1453–1459CrossRefGoogle Scholar
  271. 271.
    Pal P, Ghosh A (2016) Dynamics and relaxation of charge carriers in poly (methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. J Appl Phys 120:045108CrossRefGoogle Scholar
  272. 272.
    Wang B, Li SQ, Wang SJ (1997) Correlation between the segmental motion and ionic conductivity of poly (ether urethane)-LiClO4 complex studied by positron spectroscopy. Phys Rev B 56:11503CrossRefGoogle Scholar
  273. 273.
    Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, BerlinCrossRefGoogle Scholar
  274. 274.
    Kesavan K, Mathew CM, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly(vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25:1428–1434CrossRefGoogle Scholar
  275. 275.
    Xiao W, Wang Z, Zhang Y et al (2018) Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries. J Pow Sources 382:128–134CrossRefGoogle Scholar
  276. 276.
    Zakaria NA, Isa MIN, Mohamed NS, Subban RH (2012) Characterization of polyvinyl chloride/polyethyl methacrylate polymer blend for use as polymer host in polymer electrolytes. J Appl Polym Sci 126:E419–E424CrossRefGoogle Scholar
  277. 277.
    Ramesh S, Winie T, Arof AK (2007) Investigation of mechanical properties of polyvinyl chloride–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithium polymer cells. Eur Polym J 43:1963–1968CrossRefGoogle Scholar
  278. 278.
    Weston JE, Steele BCH (1982) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7:75–79CrossRefGoogle Scholar
  279. 279.
    Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Pow Sources 52:261–268CrossRefGoogle Scholar
  280. 280.
    Wieczorek W, Florjanczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40:2251–2258CrossRefGoogle Scholar
  281. 281.
    Croce F, Persi LL, Scrosati B et al (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461CrossRefGoogle Scholar
  282. 282.
    Yang T, Zheng J, Cheng Q et al (2017) Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl Mater Interfaces 9:21773–21780CrossRefPubMedGoogle Scholar
  283. 283.
    Kuila T, Acharya H, Srivastava SK (2007) Enhancing the ionic conductivity of PEO based plasticized composite polymer electrolyte by LaMnO3 nanofiller. Mater Sci Eng B 137:217–224CrossRefGoogle Scholar
  284. 284.
    Dissanayake MAKL, Rupasinghe WNS, Seneviratne VA et al (2014) Optimization of iodide ion conductivity and nano filler effect for efficiency enhancement in polyethylene oxide (PEO) based dye sensitized solar cells. Electrochim Acta 145:319–326CrossRefGoogle Scholar
  285. 285.
    NiMah YL, Cheng MY, Cheng JH et al (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Pow Sources 278:375–381CrossRefGoogle Scholar
  286. 286.
    Kumar D, Hashmi SA (2010) Ion transport and ion–filler-polymer interaction in poly (methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Pow Sources 195:5101–5108CrossRefGoogle Scholar
  287. 287.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462CrossRefPubMedGoogle Scholar
  288. 288.
    Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Pow Sources 164:351–364CrossRefGoogle Scholar
  289. 289.
    Ganesan SV, Mothilal KK, Ganesan TK (2018) The role of zirconium oxide as nano-filler on the conductivity, morphology, and thermal stability of poly (methyl methacrylate)–poly (styrene-co-acrylonitrile)-based plasticized composite solid polymer electrolytes. Ionics 24:3845–3860CrossRefGoogle Scholar
  290. 290.
    Chew KW, Tan KW (2011) The effects of ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate, LiCF3SO3. Int J Electrochem Sci 6:5792–5801Google Scholar
  291. 291.
    Chilaka N, Ghosh S (2014) Dielectric studies of poly (ethylene glycol)-polyurethane/poly (methylmethacrylate)/montmorillonite composite. Electrochim Acta 134:232–241CrossRefGoogle Scholar
  292. 292.
    Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167CrossRefGoogle Scholar
  293. 293.
    Deka M, Kumar A (2010) Enhanced electrical and electrochemical properties of PMMA-clay nanocomposite gel polymer electrolytes. Electrochim Acta 55:1836–1842CrossRefGoogle Scholar
  294. 294.
    Ahmad S, Saxena TK, Ahmad S et al (2006) The effect of nanosized TiO2 addition on poly(methylmethacrylate) based polymer electrolytes. J Pow Sources 159:205–209CrossRefGoogle Scholar
  295. 295.
    Jeon JD, Kim MJ, Kwak SY (2006) Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes. J Power Sources 162:1304–1311CrossRefGoogle Scholar
  296. 296.
    Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197CrossRefGoogle Scholar
  297. 297.
    Kuo CW, Bin Li W, Chen WR et al (2013) Effect of plasticizer and lithium salt concentration in PMMA-based composite polymer electrolytes. Int J Electrochem Sci 8:5007–5021Google Scholar
  298. 298.
    Shukla N, Thakur AK, Shukla A et al (2014) Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposite films. J Mater Sci-Mater El 25:2759–2770CrossRefGoogle Scholar
  299. 299.
    Tripathi N, Thakur AK, Shukla A et al (2018) Dielectric, transport and thermal properties of clay based polymer- nanocomposites. Polym Eng Sci 58:220–227CrossRefGoogle Scholar
  300. 300.
    Croce F, Sacchetti S, Scrosati B (2006) Advanced, high-performance composite polymer electrolytes for lithium batteries. J Pow Sources 161:560–564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical SciencesCentral University of PunjabBathindaIndia

Personalised recommendations