An electrospun hygroscopic and electron-conductive core-shell silica@carbon nanofiber for microporous layer in proton-exchange membrane fuel cell

  • Hung-Fan Lee
  • Pei-Chin Wang
  • Yui Whei Chen-YangEmail author
Original Paper


In this study, a novel core-shell silica@carbon nanofiber (SiO2@C) is successfully prepared via coaxial electrospinning technique with optimized parameters followed by heat treatment. The characterizations of the nanofiber are carried out by a combination of X-ray diffraction measurement, electrical conductivity test, tensile test, thermogravimetric analysis, nitrogen isotherm adsorption-desorption analysis, mechanical strength test, and water uptake measurement. It is found that the hygroscopic mesoporous SiO2 is contained in a core and the hydrophobic electron-conductive carbon is in a shell that has porous channels. The BET surface area, pore volume, electrical conductivity, mechanical strength, and water uptake of SiO2@C are all superior to that of pure carbon nanofiber. These superior properties make SiO2@C a potential microporous layer (MPL) material, benefitting the water management ability of proton-exchange membrane fuel cells (PEMFCs). The result of the single-cell performance tests shows that under 99.9% or 15% relative humidity (RH) in the temperature range of 50–80 °C, the power densities of the PEMFC fabricated with the SiO2@C-based MPL are all significantly higher than that of the pure carbon nanofiber-based MPL, and 66~302% higher than that of the traditional hydrophobic carbon black powder-based MPL. This study indicates that the as-prepared novel core-shell SiO2@C nanofiber is a promising MPL material for PEMFC.


Silica Carbon Core-shell nanofiber Microporous layer Proton-exchange membrane fuel cell 


Funding information

The authors would like to thank the Ministry of Science and Technology, Taiwan, R.O.C. for supporting the research work under grant MOST 103-2113-M-033-002 and the Chung Yuan Christian University for supporting the research work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10008_2019_4198_MOESM1_ESM.docx (376 kb)
ESM 1 (DOCX 375 kb)


  1. 1.
    Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007CrossRefGoogle Scholar
  2. 2.
    Yan WM, Hsueh CY, Soong CY, Chen F, Cheng CH, Mei SC (2007) Effect of PTFE loading of gas diffusion layers on the performance of proton exchange membrane fuel cells running at high-efficiency operating conditions. Int J Hydrog Energy 32(17):4452–4458CrossRefGoogle Scholar
  3. 3.
    Zhang LW, Chae SR, Hendren Z, Park JS, Wiesner MR (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204-206:87–97CrossRefGoogle Scholar
  4. 4.
    Stassi A, Gatto I, Passalacqua E, Antonucci V, Arico AS, Merlo L, Oldani C, Pagano E (2011) Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation. J Power Sources 196(21):8925–8930CrossRefGoogle Scholar
  5. 5.
    Tu Z, Zhang H, Luo Z, Liu J, Wan Z, Pan M (2013) Evaluation of 5 kW proton exchange membrane fuel cell stack operated at 95 °C under ambient pressure. J Power Sources 222:277–281CrossRefGoogle Scholar
  6. 6.
    Tsai CH, Lin HJ, Tsai HM, Hwang JT, Chang SM, Chen-Yang YW (2011) Characterization and PEMFC application of a mesoporous sulfonated silica prepared from two precursors, tetraethoxysilane and phenyltriethoxysilane. Int J Hydrog Energy 36(16):9831–9841CrossRefGoogle Scholar
  7. 7.
    Tsai CH, Wang CC, Chang CY, Lin CH, Chen-Yang YW (2014) Enhancing performance of Nafion®-based PEMFC by 1-D channel metal-organic frameworks as PEM filler. Int J Hydrog Energy 39(28):15696–15705CrossRefGoogle Scholar
  8. 8.
    Vinothkannan M, Kim AR, Gnana kumar G, Yoo DJ (2018) Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells. RSC Adv 8(14):7494–7508CrossRefGoogle Scholar
  9. 9.
    Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35(17):9349–9384CrossRefGoogle Scholar
  10. 10.
    Han RY, Wu PY (2018) Composite proton-exchange membrane with highly improved proton conductivity prepared by in situ crystallization of porous organic cage. ACS Appl Mater Interfaces 10(21):18351–18358CrossRefGoogle Scholar
  11. 11.
    Holmström N, Ihonen J, Lundblad A, Lindbergh G (2007) The influence of the gas diffusion layer on water management in polymer electrolyte fuel cells. Fuel Cells 7(4):306–313CrossRefGoogle Scholar
  12. 12.
    Prasanna M, Ha HY, Cho EA, Hong SA, Oh IH (2004) Influence of cathode gas diffusion media on the performance of the PEMFCs. J Power Sources 131(1-2):147–154CrossRefGoogle Scholar
  13. 13.
    Wang XL, Zhang HM, Zhang JL, Xu HF, Zhu XB, Chen J, Yi BL (2006) A bi-functional micro-porous layer with composite carbon black for PEM fuel cells. J Power Sources 162(1):474–479CrossRefGoogle Scholar
  14. 14.
    Tang HL, Wang SL, Pan M, Yuan RZ (2007) Porosity-graded microporous layers for polymer electrolyte membrane fuel cells. J Power Sources 166(1):41–46CrossRefGoogle Scholar
  15. 15.
    Chun JH, Jo DH, Kim SG, Park SH, Lee CH, Lee ES, Jyoung JY, Kim SH (2013) Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells. Renew Energy 58:28–33CrossRefGoogle Scholar
  16. 16.
    Chun JH, Park KT, Jo DH, Lee JY, Kim SG, Park SH, Lee ES, Jyoung JY, Kim SH (2011) Development of a novel hydrophobic/hydrophilic double micro porous layer for use in a cathode gas diffusion layer in PEMFC. Int J Hydrog Energy 36(14):8422–8428CrossRefGoogle Scholar
  17. 17.
    Kitahara T, Nakajima H, Okamura K (2015) Influence of hydrophilic and hydrophobic triple MPL coated GDL on the oxygen transport resistance in a PEFC under high humidity conditions. ECS Trans 69(17):1313–1322CrossRefGoogle Scholar
  18. 18.
    Tanuma T, Kinoshita S (2014) Impact of cathode fabrication on fuel cell performance. J Electrochem Soc 161(1):F94–F98CrossRefGoogle Scholar
  19. 19.
    Shrestha P, Banerjee R, Lee J, and Bazylak A (2017) Hydrophilic microporous layer coatings for polymer electrolyte membrane fuel cells. Proceedings of the 4th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'17) DOI:
  20. 20.
    Schweiss R, Steeb M, Wilde PM (2010) Mitigation of water management in PEM fuel cell cathodes by hydrophilic wicking microporous layers. Fuel Cells 10(6):1176–1180CrossRefGoogle Scholar
  21. 21.
    Tanuma T (2010) Innovative hydrophilic microporous layers for cathode gas diffusion media. J Electrochem Soc 157(12):B1809–B1813CrossRefGoogle Scholar
  22. 22.
    Kitahara T, Nakajima H, Mori K (2012) Hydrophilic and hydrophobic double microporous layer coated gas diffusion layer for enhancing performance of polymer electrolyte fuel cells under no-humidification at the cathode. J Power Sources 199:29–36CrossRefGoogle Scholar
  23. 23.
    Kitahara T, Nakajima H, Inamoto M, Morishita M (2013) Novel hydrophilic and hydrophobic double microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells under both low and high humidity. J Power Sources 234:129–138CrossRefGoogle Scholar
  24. 24.
    Kitahar T, Nakajima H, Inamoto M, Shinto K (2014) Triple microporous layer coated gas diffusion layer for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions. J Power Sources 248:1256–1263CrossRefGoogle Scholar
  25. 25.
    Wang J, Tang J, Xu YL, Ding B, Chang Z, Wang Y, Hao XD, Dou H, Kim JH, Zhang XG, Yamauchi Y (2016) Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy 28:232–240CrossRefGoogle Scholar
  26. 26.
    Song MJ, Shin MW (2014) Fabrication and characterization of carbon nanofiber@mesoporous carbon core-shell composite for the Li-air battery. Appl Surf Sci 320:435–440CrossRefGoogle Scholar
  27. 27.
    Mao XW, Hatton T, Rutledge GC (2013) A review of electrospun carbon fibers as electrode materials for energy storage. COC 17(13):1390–1401CrossRefGoogle Scholar
  28. 28.
    Zhixin J, Yongyi Y, Gang J (2011) Preparation and characterization of co/PAN-based carbon fibrous composites. Eur Phys J Appl Phys 55(1):10404CrossRefGoogle Scholar
  29. 29.
    Chen YL, Hu Y, Shen Z, Chen RZ, He X, Zhang XW, Li YQ, Wu K (2017) Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J Power Source 342:467–475CrossRefGoogle Scholar
  30. 30.
    Park S, Lee JW, Popov BN (2006) Effect of carbon loading in microporous layer on PEM fuel cell performance. J Power Sources 163(1):357–363CrossRefGoogle Scholar
  31. 31.
    Park S, Lee JW, Popov BN (2008) Effect of PTFE content in microporous layer on water management in PEM fuel cells. J Power Sources 177(2):457–463CrossRefGoogle Scholar
  32. 32.
    Lin HL, Yu TL, Shen KS, Huang LN (2005) Effect of Triton-X on the preparation of Nafion/PTFE composite membranes. J Membr Sci 237:1–7CrossRefGoogle Scholar
  33. 33.
    Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2014) Hybrid carbon silica nanofibers through sol−gel electrospinning. Langmuir 30(51):15504–15513CrossRefGoogle Scholar
  34. 34.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347CrossRefGoogle Scholar
  35. 35.
    Colomer MT, Rubio F (2016) Textural characteristics, degree of protonation, water uptake and proton transport properties relationships in colloidal sol-gel derived micro- and mesoporous silica membranes. Int J Hydrog Energy 41(13):5748–5757CrossRefGoogle Scholar
  36. 36.
    Duan Q, Wang B, Wang J, Wang H, Lu Y (2010) Fabrication of a carbon nanofiber sheet as a micro-porous layer for proton exchange membrane fuel cells. J Power Sources 195(24):8189–8193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryChung Yuan Christian UniversityChung-LiRepublic of China
  2. 2.Center for Nanotechnology and Center for Biomedical TechnologyChung Yuan Christian UniversityChung-LiRepublic of China

Personalised recommendations