Supercapacitive performances of few-layer MoS2 on reduced graphene oxides

  • Xuehua Song
  • Qibin ChenEmail author
  • Enhui Shen
  • Honglai Liu
Original Paper


Reduced graphene oxide/molybdenum disulfide composites (RGO/MoS2s) with steric structures were directly synthesized via a hydrothermal approach using a redox reaction between MoO3 and thiourea. Such RGO/MoS2s were examined by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The electrochemical performances of RGO/MoS2 hybrid electrodes were then assessed by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectrometry (EIS) in 1 M Na2SO4 aqueous solutions. RGO/MoS2 hybrid materials exhibit a high specific capacitance of 243.4 F/g at 0.5 A/g, a superior cycling stability (92% retention after 2000 cycles at 1 A/g) and a distinctively high coulombic efficiency (near 100% after 2000 cycles) as well. Such excellent electrochemical behaviors could be ascribed to the steric structure of bending MoS2 nanosheets decorated on the surfaces of RGO, which favors facilitating the fast ion diffusion and the high conductivity in pseudocapacitive electrodes. Our findings suggested that the resulting morphologies and electrochemical performances of RGO/MoS2 hybrid materials could be tuned via varying steric structures of pseudocapacitive materials, which may render an alternative strategy to improve the electrochemical performance as supercapacitive electrodes.


Reduced graphene oxide MoS2 Composite Supercapacitive electrode 


Funding information

This work is supported by the National Natural Science Foundation of China (Nos. 21576079 and 91334203), the 111 Project of Ministry of Education of China (No. B08021), and the Fundamental Research Funds for the Central Universities of China (No. WK 1213003).

Supplementary material

10008_2019_4195_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1731 kb)


  1. 1.
    Zhong C, Deng YD, Hu WB, Qiao JL, Zhang L, Zhang JJ (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539Google Scholar
  2. 2.
    Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188Google Scholar
  3. 3.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854Google Scholar
  4. 4.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New YorkGoogle Scholar
  5. 5.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502Google Scholar
  6. 6.
    Dillon AC (2010) Carbon nanotubes for photoconversion and electrical energy storage. Chem Rev 110(11):6856–6872Google Scholar
  7. 7.
    Teng F, Santhanagopalan S, Wang Y, Meng DD (2010) In-situ hydrothermal synthesis of three-dimensional MnO2–CNT nanocomposites and their electrochemical properties. J Alloys Compd 499(2):259–264Google Scholar
  8. 8.
    Yun YS, Kim JM, Park HH, Lee J, Huh YS, Jin H (2013) Free-standing heterogeneous hybrid papers based on mesoporous γ-MnO2 particles and carbon nanotubes for lithium-ion battery anodes. J Power Sources 244:747–751Google Scholar
  9. 9.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377Google Scholar
  10. 10.
    Wang DW, Li F, Cheng HM (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sources 185(2):1563–1568Google Scholar
  11. 11.
    Pazhamalai P, Krishnamoorthy K, Mariappan VK, Sahoo S, Manoharan S, Kim SJ (2018) A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with lonogel electrolyte. Adv Mater Interfaces 5(12):1800055Google Scholar
  12. 12.
    Krishnamoorthy K, Pazhamalai P, Kim SJ (2018) Two-dimensional siloxene nanosheets: novel high-performance supercapacitor electrode materials. Energy Environ Sci 11(6):1595–1602Google Scholar
  13. 13.
    Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425Google Scholar
  14. 14.
    Matte HSSR, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 122(24):4153–4156Google Scholar
  15. 15.
    Yao B, Zhang J, Kou T, Song Y, Liu TY, Li Y (2017) Paper-based electrodes for flexible energy storage devices. Adv Sci 4:1700107–1700138Google Scholar
  16. 16.
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712Google Scholar
  17. 17.
    Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10(4):313–318Google Scholar
  18. 18.
    Wang XH, Ding JJ, Yao SW, Wu XX, Feng QQ, Wang Z, Geng BY (2014) High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures. J Mater Chem A 2(38):15958–15963Google Scholar
  19. 19.
    Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Kim SJ (2014) Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Mater Res Bull 50:499–502Google Scholar
  20. 20.
    Ilanchezhiyan P, Kumar GM, Kang TW (2015) Electrochemical studies of spherically clustered MoS2 nanostructures for electrode applications. J Alloys Compd 634:104–108Google Scholar
  21. 21.
    Javed MS, Dai S, Wang M, Guo D, Chen L, Wang X, Hu C, Xi Y (2015) High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J Power Sources 285:63–69Google Scholar
  22. 22.
    Huang KJ, Zhang JZ, Shi GW, Liu YM (2014) Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim Acta 132:397–403Google Scholar
  23. 23.
    Ramadoss A, Kim T, Kim GS, Kim SJ (2014) Enhanced activity of a hydrothermally synthesized mesoporous MoS2 nanostructure for high performance supercapacitor applications. New J Chem 38(6):2379–2385Google Scholar
  24. 24.
    Huang KJ, Wang L, Zhang JZ, Wang LL, Mo YP (2014) One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor. Energy 67:234–240Google Scholar
  25. 25.
    Huang KJ, Wang L, Liu YJ, Liu YM, Wang HB, Gan T, Wang LL (2013) Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance. Int J Hydrog Energy 38(32):14027–14034Google Scholar
  26. 26.
    Ratha S, Rout CS (2013) Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Interfaces 5(21):11427–11433Google Scholar
  27. 27.
    Sun G, Liu J, Zhang X, Wang X, Li H, Yu Y, Huang W, Zhang H, Chen P (2014) Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angew Chem Int Ed 53:12576–12580Google Scholar
  28. 28.
    Yan J, Wang Q, Wei T, Fan ZJ (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1301380–1130858Google Scholar
  29. 29.
    Hu BL, Qin XY, Asiri AM, Alamry KA, Al-Youbi AO, Sun XP (2013) Synthesis of porous tubular C/MoS2 nanocomposites and their application as a novel electrode material for supercapacitors with excellent cycling stability. Electrochim Acta 100:24–28Google Scholar
  30. 30.
    Weng QH, Wang X, Wang XB, Zhang C, Jiang XF, Bando Y, Golberg D (2015) Supercapacitive energy storage performance of molybdenum disulfide nanosheets wrapped with microporous carbons. J Mater Chem A 3(6):3097–3102Google Scholar
  31. 31.
    Wang J, Wu Z, Hu K, Chen X, Yin H (2015) High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J Alloys Compd 619:38–43Google Scholar
  32. 32.
    Huang KJ, Wang L, Liu YJ, Wang HB, Liu YM, Wang LL (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594Google Scholar
  33. 33.
    Ma GF, Peng H, Mu JJ, Huang HH, Zhou XZ, Lei ZQ (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78Google Scholar
  34. 34.
    Wang J, Wu Z, Yin H, Li W, Jiang Y (2014) Poly (3,4-ethylenedioxythiophene)/MoS2 nanocomposites with enhanced electrochemical capacitance performance. RSC Adv 4(100):56926–56932Google Scholar
  35. 35.
    Firmiano EGDS, Rabelo AC, Dalmaschio CJ, Pinheiro AN, Pereira EC, Schreiner WH, Leite ER (2014) Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv Energy Mater 4(6):1301380–1301387Google Scholar
  36. 36.
    Ma L, Xu LM, Zhou XP, Xu XY (2014) Biopolymer-assisted hydrothermal synthesis of flower-like MoS2 microspheres and their supercapacitive properties. Mater Lett 132:291–294Google Scholar
  37. 37.
    Li L, Yang H, Yang J, Zhang L, Miao J, Zhang Y, Sun C, Huang W, Dong X, Liu B (2016) Hierarchical carbon@NiS@MoS double core–shell nanorods for high-performance supercapacitors. J Mater Chem A 4(4):1319–1325Google Scholar
  38. 38.
    Li X, Li X, Cheng J, Yuan D, Ni W, Guan Q, Gao L, Wang B (2016) Fiber−shaped solid−state supercapacitors based on molybdenum disulfide Nanosheets for a self−powered photodetecting system. Nano Energy 21:228–237Google Scholar
  39. 39.
    Zhang Y, Sun W, Rui X, Li B, Tan HT, Guo G, Madhavi S, Zong Y, Yan Q (2015) One-pot synthesis of tunable crystalline Ni3S4 @amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small 11(30):3694–3702Google Scholar
  40. 40.
    Savjani N, Lewis EA, Bissett MA, Brent JR, Dryfe RAW, Haigh SJ, Brien PO (2016) Synthesis of lateral size-controlled monolayer 1H-MoS2@oleylamine as supercapacitor electrodes. Chem Mater 28(2):657–664Google Scholar
  41. 41.
    Xu XY, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5858Google Scholar
  42. 42.
    Yu HL, Ma C, Ge BH, Chen YJ, Xu Z, Zhu CL, Li CY, Ouyang QY, Gao P, Li JQ, Sun CW, Qi LH, Wang YM, Li FH (2013) Three-dimensional hierarchical architectures constructed by graphene/ MoS2 nanoflake arrays and their rapid charging/discharging properties as lithium-ion battery anodes. Chem Eur J 19(19):5818–5823Google Scholar
  43. 43.
    Min SD, Zhao CJ, Chen GR, Qian XZ (2014) One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim Acta 115:155–164Google Scholar
  44. 44.
    Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon JP (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22(16):4522–4524Google Scholar
  45. 45.
    Zhu CB, Mu XK, Aken PA, Yu Y, Maier J (2013) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Ed 53:2152–2156Google Scholar
  46. 46.
    Wang L, Li YH, Han ZD, Chen L, Qian B, Jiang XF, Pinto J, Yang G (2013) Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene. J Mater Chem A 1:8385–8397Google Scholar
  47. 47.
    Choi JG, Thompson LT (1996) XPS study of as-prepared and reduced molybdenum oxides. Appl Surf Sci 93(2):143–149Google Scholar
  48. 48.
    Wang K, Dong X, Zhao C, Qian X, Xu Y (2015) Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim Acta 152:433–442Google Scholar
  49. 49.
    Bonaccorso F, Tan PH, Ferrari AC (2013) Multiwall nanotubes, multilayers, and hybrid nanostructures: new frontiers for technology and Raman spectroscopy. ACS Nano 7(3):1838–1844Google Scholar
  50. 50.
    Yang WL, Chen QB, Song XH, Tan HL, Liu HL (2018) Exceptional supercapacitive performance of bicontinuous carbon/MnO2 composite electrodes. Ceram Int 44(12):13858–13866Google Scholar
  51. 51.
    Wu ZC, Li B, Xue YJ, Li JJ, Zhang YL, Gao F (2015) Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. J Mater Chem A 3(38):19445–19454Google Scholar
  52. 52.
    Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5):2695–2700Google Scholar
  53. 53.
    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 1111:4925–14931Google Scholar
  54. 54.
    Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN (2018) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 8:1703043Google Scholar
  55. 55.
    Pazhamalai P, Krishnamoorthy K, Mariappan VK, Kim SJ (2019) J Colloid Interface Sci 536:62–70Google Scholar
  56. 56.
    Wang W, Guo SR, Lee I, Ahmed K, Zhong JB, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:4452Google Scholar
  57. 57.
    Choi BG, Hong J, Hong WH, Hammond PT, Park H (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5(9):7205–7213Google Scholar
  58. 58.
    Li L, Cheah Y, Ko Y, Teh P, Wee G, Wong C, Peng S, Srinivasan M (2013) The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. J Mater Chem A 1(36):10935–10941Google Scholar
  59. 59.
    Devaraj S, Munichandraiah NJ (2007) Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing. J Electrochem Soc 154(2):A80–A88Google Scholar
  60. 60.
    Wang L, Ji HM, Wang SS, Kong LJ, Jiang XF, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5(9):3793–3799Google Scholar
  61. 61.
    Fan LQ, Liu GJ, Zhang CY, Wu JH, Wei YL (2015) Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. Int J Hydrog Energy 40(32):10150–10157Google Scholar
  62. 62.
    Krishnamoorthy K, Veerasubramani GK, Pazhamalai P, Sang JK (2016) Designing two dimensional nanoarchitectured MoS2 sheets grown on Mo foil as a binder free electrode for supercapacitors. Electrochim Acta 190:305–312Google Scholar
  63. 63.
    Jiang W, Yu D, Zhang Q, Goh K, Wei L, Yong Y, Jiang R, Wei J, Chen Y (2015) Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life. Adv Funct Mater 25(7):1063–1073Google Scholar
  64. 64.
    Gao Z, Wang J, Li ZS, Yang WL, Wang B, Hou MJ, He Y, Liu Q, Mann T, Yang PP, Zhang ML, Liu LH (2011) Graphene nanosheet /Ni2+/Al3+ layered double-hydroxide composite as a novel electrode for a supercapacitor. Chem Mater 23(15):3509–3516Google Scholar
  65. 65.
    Ranjusha R, Prathibha V, Ramakrishna S, Nair AS, Anjali P, Subramanian KRV, Sivakumar N, Kim TN, Nair SV, Balakrishnan A (2013) Conductive blends of camphoric carbon nanobeads anchored with MnO2 for high-performance rechargeable electrodes in battery/supercapacitor applications. Scr Mater 68(11):881–884Google Scholar
  66. 66.
    Chen H, Zhou M, Wang Z, Zhao S, Guan S (2014) Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors. Electrochim Acta 148:187–194Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xuehua Song
    • 1
  • Qibin Chen
    • 1
    Email author
  • Enhui Shen
    • 1
  • Honglai Liu
    • 1
  1. 1.State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations