Advertisement

Thermodynamic considerations of screening halide molten-salt electrolytes for electrochemical reduction of solid oxides/sulfides

  • Hongwei Xie
  • Haijia Zhao
  • Jiakang Qu
  • Qiushi Song
  • Zhiqiang Ning
  • Huayi YinEmail author
Original Paper
  • 44 Downloads

Abstract

Molten salt is an indispensable electrolyte for electrochemically extracting reactive metals that cannot be obtained by a carbothermic reduction or a low-cost metallothermic reduction route. The choice of the molten salt is highly related to its thermodynamic properties, electrode materials, and the interactions of oxides/sulfides with the molten salts. Herein, thermodynamic properties of molten chlorides fitted with a solid oxide/sulfide cathode are systematically studied in terms of the electrochemical window, the exchange reactions between the oxides/sulfides and the electrolytes, and the role of cations/anions governing the deposition potential of various species in a unary molten salt or a molten-salt mixture. Thermodynamically, the choice of a molten salt for electrolysis should combine the electrochemical window of a molten salt and the in situ formed most stable oxides/sulfides possessing cations from the molten salt itself. This paper sets a guideline for screening molten salts for electrochemical reduction of solid oxides/sulfides and sheds light on the design of an appropriate salt melt for material synthesis.

Keywords

Thermodynamics Electrochemical reduction Molten salt Oxide Sulfide 

Notes

Funding information

We greatly thank the financial support from NSFC (51704060, 51334004), the National Thousand Youth Talent Program of China, the Fundamental Research Funds for the Central Universities (N172505002), and the 111 Project (B16009).

References

  1. 1.
    Sawan ME, Youssef MZ (2006) Fusion Eng Des 81(1-7):505–511CrossRefGoogle Scholar
  2. 2.
    Weinstein LA, Loomis J, Bhatia B, Bierman DM, Wang EN, Chen G (2015) Chem Rev 115(23):12797–12838CrossRefGoogle Scholar
  3. 3.
    Lantelme F, Groult H (2013) Molten salts chemistry-from lab to applications. Elsevier, USAGoogle Scholar
  4. 4.
    Galasiu I, Galasiu R, Thonstad J (2007) Inert anode for aluminum electrolysis. Aluminum-Verlag Marketing and koummunikation GmbH, DüsseldorfGoogle Scholar
  5. 5.
    Chen GZ, Fray DJ, Farthing TW (2000) Nature 407(6802):361–364CrossRefGoogle Scholar
  6. 6.
    Jiang K, Hu XH, Ma M, Wang DH, Qiu GH, Jin XB, Chen GZ (2006) Angew Chem Int Edit 45(3):428–432CrossRefGoogle Scholar
  7. 7.
    Peng JJ, Jiang K, Xiao W, Wang DH, Jin XB, Chen GZ (2008) Chem Mater 20(23):7274–7280CrossRefGoogle Scholar
  8. 8.
    Wu T, Jin XB, Xiao W, Hu XH, Wang DH, Chen GZ (2007) Chem Mater 19(2):153–160CrossRefGoogle Scholar
  9. 9.
    Wu T, Xiao W, Jin X, Liu C, Wang D, Chen GZ (2008) PCCP 10(13):1809–1818CrossRefGoogle Scholar
  10. 10.
    Yan XY, Fray DJ (2005) Adv Funct Mater 15(11):1757–1761CrossRefGoogle Scholar
  11. 11.
    Wang DH, Qiu GH, Jin XB, Hu XH, Chen GZ (2006) Angew Chem Int Edit 45(15):2384–2388CrossRefGoogle Scholar
  12. 12.
    Jin XB, Gao P, Wang DH, Hu XH, Chen GZ (2004) Angew Chem Int Edit 43(6):733–736CrossRefGoogle Scholar
  13. 13.
    Nohira T, Yasuda K, Ito Y (2003) Nat Mater 2(6):397–401CrossRefGoogle Scholar
  14. 14.
    Yin H, Xiao W, Mao X, Wei W, Zhu H, Wang D (2013) Electrochim Acta 102:369–374CrossRefGoogle Scholar
  15. 15.
    Abdelkader AM, Kilby KT, Cox A, Fray DJ (2013) Chem Rev 113(5):2863–2886CrossRefGoogle Scholar
  16. 16.
    Xiao W, Wang D (2014) Chem Soc Rev 43(10):3215–3228CrossRefGoogle Scholar
  17. 17.
    Yan XY, Fray DJ (2005) J Electrochem Soc 152(1):D12–D21CrossRefGoogle Scholar
  18. 18.
    Hu L, Song Y, Ge J, Zhu J, Han Z, Jiao S (2017) J Mater Chem A 5(13):6219–6225CrossRefGoogle Scholar
  19. 19.
    Weng W, Wang M, Gong X, Wang Z, Wang D, Guo Z (2016) Electrochim Acta 212:162–170CrossRefGoogle Scholar
  20. 20.
    Ge J, Han Z, Zhu J, Jiao S (2017) J Electrochem Soc 164(4):D248–D252CrossRefGoogle Scholar
  21. 21.
    Dong Y, Slade T, Stolt MJ, Li L, Girard SN, Mai L, Jin S (2017) Angew Chem Int Edit 56(46):14453–14457CrossRefGoogle Scholar
  22. 22.
    Wang SL, Zhang FS, Liu X, Zhang LJ (2008) Thermochim Acta 470(1-2):105–107CrossRefGoogle Scholar
  23. 23.
    Vignes A (2011) Extractive metallurgy 1. John Wiley & Sons, Inc., LondonGoogle Scholar
  24. 24.
    Yuan Y, Li W, Chen H, Wang Z, Jin X, Chen GZ (2016) Faraday Discuss 190:85–96CrossRefGoogle Scholar
  25. 25.
    Ito M, Morita K (2004) Mater Trans 45(8):2712–2718CrossRefGoogle Scholar
  26. 26.
    Lebedev VA, Sal’nikov VI, Tarabaev MV, Sizikov IA, Rymkevich DA (2007) Russ J Appl Chem 80(9):1491–1497CrossRefGoogle Scholar
  27. 27.
    Xiao W, Jin X, Deng Y, Wang D, Chen GZ (2007) Chem-Eur J 13(2):604–612CrossRefGoogle Scholar
  28. 28.
    Xiao W, Jin X, Deng Y, Wang D, Hu X, Chen GZ (2006) Chemphyschem 7(8):1750–1758CrossRefGoogle Scholar
  29. 29.
    Wang T, Gao H, Jin X, Chen H, Peng J, Chen GZ (2011) Electrochem Commun 13(12):1492–1495CrossRefGoogle Scholar
  30. 30.
    Yin H, Chung B, Sadoway DR (2016) Nat Commun 7:1–5Google Scholar
  31. 31.
    Kim H, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Jiang K, Tomaszowska AA, Wang K, Wei W, Ortiz LA, Barriga SA, Poizeau SM, Sadoway DR (2013) Chem Rev 113(3):2075–2099CrossRefGoogle Scholar
  32. 32.
    Yin H, Chung B, Chen F, Ouchi T, Zhao J, Tanaka N, Sadoway DR (2018) Nat Energy 3(2):127–131CrossRefGoogle Scholar
  33. 33.
    Zhu Y, Wang DH, Ma M, Hu XH, Jin XB, Chen GZ (2007) Chem Commun 24:2515–2517CrossRefGoogle Scholar
  34. 34.
    Peng JJ, Zhu Y, Wang DH, Jin XB, Chen GZ (2009) J Mater Chem 19(18):2803–2809CrossRefGoogle Scholar
  35. 35.
    Yin HY, Gao LL, Zhu H, Mao XH, Gan FX, Wang DH (2011) Electrochim Acta 56(9):3296–3302CrossRefGoogle Scholar
  36. 36.
    Ishitsuka T, Nose K (2002) Corros Sci 44(2):247–263CrossRefGoogle Scholar
  37. 37.
    Lebedev VA, Sal’nikov VI, Sizikov IA, Rymkevich DA (2007) Russ J Appl Chem 80(9):1503–1508CrossRefGoogle Scholar
  38. 38.
    Suzuki RO, Aizawa M, Ono K (1999) J Alloys Compd 288(1–2):173–182CrossRefGoogle Scholar
  39. 39.
    Wang DH, Jin XB, Chen GZ (2008) Annu Rep Prog Chem Sect C 104:189–234CrossRefGoogle Scholar
  40. 40.
    Peng Y, Wang D, Wang Z, Gong X, Wang M, Qi T, Meng F (2018) J Alloys Compd 738:345–353CrossRefGoogle Scholar
  41. 41.
    Matsuzaki T, Natsui S, Kikuchi T, Suzuki RO (2017) Mater Trans 58(3):371–376CrossRefGoogle Scholar
  42. 42.
    Jiang R, Fan J, Hu L, Dou Y, Mao X, Wang D (2017) Electrochim Acta 261:578–587CrossRefGoogle Scholar
  43. 43.
    Masset P, Guidotti RA (2007) J Power Sources 164(1):397–414CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations