Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 583–590 | Cite as

Preparation of erythromycin imprinted polymer by metal-free visible-light–induced ATRP and its application in sensor

  • Yue SunEmail author
  • Mengyuan Zhao
  • Yutong Liu
  • Liye Fu
  • Siyu Li
  • Yifei Yang
Original Paper


Erythromycin (ERY) molecular imprinted polymer was prepared on the surface of Au electrode modified with Ni and Au nanoclusters (MIP/AuNCs/Ni/Au) via metal-free visible-light–induced atom transfer radical polymerization, which was very easy, controllable, and environmentally benign. MIP/AuNCs/Ni/Au was examined by energy dispersive spectrometer (EDS), scanning electron microscope (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Further, MIP/AuNCs/Ni/Au was successfully used for the determination of ERY by differential pulse voltammetry (DPV). Under the optimal conditions, MIP/AuNCs/Ni/Au gave a linear correlation over the ERY concentration from 1.0 × 10−8 to 1.0 × 10−1 mg/L with the detection limit of 3.2 × 10−9 mg/L (S/N = 3). Comparing with the similar sensors, the larger linear range and lower detection limit indicated the promising prospect of this electrochemical sensor. Hence, this study was of great importance for the polymer-modified electrodes and the sensitive detection of ERY.


Erythromycin (ERY) Metal-free visible-light–induced atom transfer radical polymerization (MVL ATRP) Molecular imprinted polymer (MIP) 


Funding information

Authors gratefully acknowledge the financial support from High Level Talent Innovation Support Project from Dalian (no. 2016RQ047), Key Laboratory of Education Department of Liaoning Province (no. L201683656), and National Natural Science Foundation of China (no. 21304041).

Supplementary material

10008_2018_4164_MOESM1_ESM.docx (364 kb)
ESM 1 (DOCX 364 kb)


  1. 1.
    Rao W, Cai R, Zhang Z, Yin Y, Long F, Fu X (2014) RSC Adv 4(36):18503–18511CrossRefGoogle Scholar
  2. 2.
    Szczepanska B, Andrzejewska M, Spica D, Klawe JJ (2017) BMC Microbiol 17(1):80–88CrossRefGoogle Scholar
  3. 3.
    Lian W, Liu S, Yu J, Xing X, Li J, Cui M, Huang J (2012) Biosens Bioelectron 38(1):163–169CrossRefGoogle Scholar
  4. 4.
    Sato S, Furuta K, Mishiro T, Miyake T, Kohge N, Akagi S, Adachi K, Kinoshita Y, Clin J (2005) Gastroenterol 39:743–744Google Scholar
  5. 5.
    Han NE (2003) Food Sci 24:118–120Google Scholar
  6. 6.
    Pérez MLG, Romero-González R, Vidal JLM, Frenich AG (2013) J Sep Sci 36(7):1223–1230CrossRefGoogle Scholar
  7. 7.
    Zhou Y, Zhou T, Jin H, Jing T, Song B, Zhou Y, Mei S, Lee YI (2015) Talanta 137:1–10CrossRefGoogle Scholar
  8. 8.
    Vajdle O, Guzsvány V, Škorić D, Anojčić J, Jovanov P, Avramov-Ivić M, Csanádi J, Kónya Z, Petrović S, Bobrowski A (2016) Electrochim Acta 191:44–54CrossRefGoogle Scholar
  9. 9.
    Song B, Zhou Y, Jin H, Jing T, Zhou T, Hao Q, Zhou Y, Mei S, Lee YI (2014) Microchem J 116:183–190CrossRefGoogle Scholar
  10. 10.
    Tang Y, Liu H, Gao J, Liu X, Gao X, Lu X, Fang G, Wang J, Li J (2018) Talanta 181:95–103CrossRefGoogle Scholar
  11. 11.
    Yu Q, Zhang J, Zhang G, Gan Z (2015) Macromol Biosci 15(4):509–520CrossRefGoogle Scholar
  12. 12.
    Yang HK, Kim T, Ji HR, Yoo YJ (2010) Biosens Bioelectron 25:1160–1165CrossRefGoogle Scholar
  13. 13.
    Ashley J, Wu K, Hansen MF, Schmidt MS, Boisen A, Sun Y (2017) Anal Chem 89(21):11484–11490CrossRefGoogle Scholar
  14. 14.
    Bongaers E, Alenus J, Horemans F, Weustenraed A, Lutsen L, Vanderzande D, Cleij TJ, Troost FJ, Brummer RJ, Wagner P (2010) Phys Status Solidi 207(4):837–843CrossRefGoogle Scholar
  15. 15.
    Neto JDRM, Santos WDJR, Lima PR, Tanaka AA, Kubota LT (2011) Sensors Actuat B-Chem 152(2):220–225CrossRefGoogle Scholar
  16. 16.
    Mohammad Rabea A, Zhu S (2015) Macromol React Eng 8:771–776CrossRefGoogle Scholar
  17. 17.
    Rusen E, Mocanu A (2013) Colloid Polym Sci 291(9):2253–2257CrossRefGoogle Scholar
  18. 18.
    Tokusoglu O (2015) J Biosci Bioeng 119:200–205CrossRefGoogle Scholar
  19. 19.
    Chen M, Macleod MJ, Johnson JA (2015) ACS Macro Lett 4(5):566–569CrossRefGoogle Scholar
  20. 20.
    And HG, Matyjaszewski K (2006) Macromolecules 39:4960–4965CrossRefGoogle Scholar
  21. 21.
    Deng G, Ma D, Xu X (2007) Eur Polym J 43(4):1179–1187CrossRefGoogle Scholar
  22. 22.
    Jiang H, Lu J (2013) E-Polymers 13:341–348Google Scholar
  23. 23.
    Liu XD, Zhang L, Cheng ZP, Zhu X (2016) Polym Chem-UK 7(3):689–700CrossRefGoogle Scholar
  24. 24.
    Wang Y, Tian C, Jiang H, Zhang L, Zhu X (2018) RSC Adv 8(20):11150–11156CrossRefGoogle Scholar
  25. 25.
    Chmielarz P, Fantin M, Park S, Isse AA, Gennaro A, Magenau AJD, Sobkowiak A, Matyjaszewski K (2017) Prog Polym Sci 69:47–48CrossRefGoogle Scholar
  26. 26.
    Yagci Y, Yilmaz G, Kutahya C, Aykac SF (2016) Polym Chem-UK 7:6094–6098CrossRefGoogle Scholar
  27. 27.
    Cho EJ, Park GR, Choi Y, Choi MG, Chang SK (2016) Asian J. Org Chem 6:436–440Google Scholar
  28. 28.
    Huang Z, Gu Y, Liu X, Zhang L, Cheng Z, Zhu X (2016) Macromol Rapid Commun 38:1–5Google Scholar
  29. 29.
    Liu X, Zhang L, Cheng Z, Zhu X (2016) Chem Commun 52(72):10850–10853CrossRefGoogle Scholar
  30. 30.
    Theriot JC, Lim CH, Yang H, Ryan MD, Musgrave CB, Miyake GM (2016) Science 352(6289):1082–1086CrossRefGoogle Scholar
  31. 31.
    Sun Y, Du HY, Lan YT, Wang W, Liang YJ, Feng CL, Yang M (2016) Biosens Bioelectron 77:894–900CrossRefGoogle Scholar
  32. 32.
    Ma X, Ye K, Wang G, Duan M, Cheng K, Wang G, Cao D (2017) Appl Surf Sci 414:353–360CrossRefGoogle Scholar
  33. 33.
    Huang J, Han X, Wang D, Liu D, You T (2013) ASC Appl Mater Inter 5(18):9148–9154CrossRefGoogle Scholar
  34. 34.
    Yamazaki SI, Kaneko T, Taketomo N, Kano K, Ikeda T (2002) Biosci Biotech Bioch 66:2100CrossRefGoogle Scholar
  35. 35.
    Gloria NC, Pius UO (2018) Der Pharma Chemica 10(3):9–15Google Scholar
  36. 36.
    Sun X, Tian W, Wang Y, Guo L (2015) Sci Adv Mater 7:39Google Scholar
  37. 37.
    Ezhova NM, Garkushina IS, Pisarev OA (2011) Appl Biochem Microbiol 47(6):635–639CrossRefGoogle Scholar
  38. 38.
    Peng J, Huang Q, Zhuge W, Liu Y, Zhang C, Yang W, Xiang G (2018) Biosens Bioelectron 106:212–218CrossRefGoogle Scholar
  39. 39.
    Dong YJ, Zhao SC, Zeng-Mei LI, Deng LG, Hui Y, Yan W, Zhang SQ (2018) Food Sci Technol 11:1765Google Scholar
  40. 40.
    Zhang Y, Zhou Z, Zheng J, Li H, Cui J, Liu S, Yan Y, Li C (2017) Microchim Acta 184:1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yue Sun
    • 1
    Email author
  • Mengyuan Zhao
    • 1
  • Yutong Liu
    • 1
  • Liye Fu
    • 2
  • Siyu Li
    • 1
  • Yifei Yang
    • 1
  1. 1.School of Chemistry and Chemical EngineeringLiaoning Normal UniversityDalianChina
  2. 2.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations