Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 565–572 | Cite as

TiO2 nanoparticles anchored on three-dimensionally ordered macro/mesoporous carbon matrix as polysulfides’ immobilizers for high performance lithium/sulfur batteries

  • Chunyong Liang
  • Xiaomin Zhang
  • Yan ZhaoEmail author
  • Taizhe Tan
  • Yongguang ZhangEmail author
Original Paper


A three-dimensionally (3D) ordered macro/mesoporous carbon (3DOMC) is synthesized by one-step template method as a TiO2 supporter, and this TiO2/3DOMC hybrid plays the role of immobilizers and can limit any polysulfides from escaping the cathode. The TiO2/3DOMC exhibits high pore volume and specific surface area, accommodating up to 73.2 wt% in sulfur content. As a sulfur host, S/TiO2/3DOMC composite was able to delivered 1105 mAh g−1 on first discharge and 695 mAh g−1 after 150 cycles at a current rate of 0.5 C. Even though at 2 C this material was able to keep a capacity of 551 mAh g−1. We attribute the superior performance to the good conductivity and structural restriction of carbon and the intense electrostatic attraction between metal-oxygen bond and polysulfides to encapsulate sulfur of the TiO2/3DOMC.

Graphical abstract

Schematic of the preparation of the S/TiO2/3DOMC


Lithium ion battery Three-dimensionally (3D) ordered macroporous carbon (3DOMC) TiO2/3DOMC hybrid Good conductivity Intense electrostatic attraction 


Funding information

The study received financial support from the Program for the Outstanding Young Talents of Hebei Province; Scientific Research Foundation for Selected Overseas Chinese Scholars, Ministry of Human Resources and Social Security of China (Grant No. CG2015003002).


  1. 1.
    Marom R, Amalraj S, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954CrossRefGoogle Scholar
  2. 2.
    Geng Z, Xiao Q, Wang D, Yi G, Xu Z, Li B, Zhang C (2016) Improved electrochemical performance of biomass-derived nanoporous carbon/sulfur composites cathode for lithium-sulfur batteries by nitrogen doping. Electrochim Acta 202:131–139CrossRefGoogle Scholar
  3. 3.
    Lin Z, Liu Z, Fu W, Dudney N, Liang C (2013) Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23:1064–1069CrossRefGoogle Scholar
  4. 4.
    Manthiram A, Chung S, Zu C (2015) Lithium-sulfur batteries: progress and prospects. Adv Mater 27:1980–2006CrossRefGoogle Scholar
  5. 5.
    Jeong Y, Lee K, Kim T, Kim J, Park J, Cho Y, Yang S, Park C (2016) Partially unzipped carbon nanotubes for high-rate and stable lithium–sulfur batteries. J Mater Chem A 4:819–826CrossRefGoogle Scholar
  6. 6.
    He M, Yuan L, Zhang W, Hu X, Huang Y (2011) Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J Phys Chem C 115:15703–15709CrossRefGoogle Scholar
  7. 7.
    Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032CrossRefGoogle Scholar
  8. 8.
    Hou Y, Li J, Gao X, Wen Z, Yuan C, Chen J (2016) 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries. Nanoscale 8:8228–8235CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Li Q, Jiang S, Zhang K, Lai Y, Li J (2015) Sulfur encapsulated in a TiO2-anchored hollow carbon nanofiber hybrid nanostructure for lithium-sulfur batteries. Chem Eur J 21:1343–1349CrossRefGoogle Scholar
  10. 10.
    Ji X, Lee K, Nazar L (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506CrossRefGoogle Scholar
  11. 11.
    Schuster J, He G, Mandlmeier B, Yim T, Lee K, Bein T, Nazar L (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 124:3591–3595CrossRefGoogle Scholar
  12. 12.
    Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard M, Saraf L, Nie Z, Exarhos G, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181CrossRefGoogle Scholar
  13. 13.
    Wu B, Jiang X, Xiao L, Zhang W, Pan J, Ai X, Yang H, Cao Y (2014) Enhanced cycling stability of sulfur cathode surface-modified by poly(N-methylpyrrole). Electrochim Acta 135:108–113CrossRefGoogle Scholar
  14. 14.
    Peng H, Zhang Q (2015) Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angew Chem Int Ed 54:11018–110020CrossRefGoogle Scholar
  15. 15.
    Chen X, Peng HJ, Zhang R, Hou TZ, Huang JQ, Li B, Zhang Q (2017) An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides. ACS Energy Lett 2:795–801CrossRefGoogle Scholar
  16. 16.
    Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW, Cheng XB, Wei F, Zhang Q (2016) Powering lithium-sulphur battery performance by propelling polysulphide redox at sulphiphilic hosts. Nano Lett 16:519–527CrossRefGoogle Scholar
  17. 17.
    Lei T, Xie Y, Wang X, Miao S, Xiong J, Yan C (2017) TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries. Small 13:1701013CrossRefGoogle Scholar
  18. 18.
    Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y, Huang H, Xia Y, Liang C, Zhang W, Cui Y (2014) Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries. Nano Lett 14:5288–5294CrossRefGoogle Scholar
  19. 19.
    Li J, G J, Deng J, Huang Y (2017) Enhanced electrochemical performance of lithium-sulfur batteries by using mesoporous TiO2 spheres as host materials for sulfur impregnation. Mater Lett 189:188–191CrossRefGoogle Scholar
  20. 20.
    Chen T, Cheng B, Zhu G, Chen R, Hu Y, Ma L et al (2017) Highly efficient retention of polysulfides in “sea urchin”-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium–sulfur batteries. Nano Lett 17:437–444CrossRefGoogle Scholar
  21. 21.
    Chen T, Ma L, Cheng B, Chen R, Yi H, Zhu G, Wang Y, Liang J, Tie Z, Liu J, Jin Z (2017) Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy 38:239–248CrossRefGoogle Scholar
  22. 22.
    Chen T, Zhang Z, Cheng B et al (2017) Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J Am Chem Soc 139:12710–12715CrossRefGoogle Scholar
  23. 23.
    Ma L, Zhang W, Wang L, Hu Y, Zhu G, Wang Y, Chen R, Chen T, Tie Z, Liu J, Jin Z (2018) Strong capillarity, chemisorption and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate and long-cycling lithium-sulfur batteries. ACS Nano 12:4868–4876CrossRefGoogle Scholar
  24. 24.
    Ma L, Chen R, Zhu G, Hu Y, Wang Y, Chen T, Liu J, Jin Z (2017) Cerium oxide nanocrystal embedded bimodal micro-mesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 11:7274–7283CrossRefGoogle Scholar
  25. 25.
    Wang J, Wu Y, Shi Z, Wu C (2014) Mesoporous carbon with large pore volume and high surface area prepared by a co-assembling route for lithium-sulfur batteries. Electrochim Acta 144:307–314CrossRefGoogle Scholar
  26. 26.
    Wang Z, Zhang S, Zhang L, Lin R, Wu X, Fang H, Ren Y (2014) Hollow spherical carbonized polypyrrole/sulfur composite cathode materials for lithium/sulfur cells with long cycle life. J Power Sources 248:337–342CrossRefGoogle Scholar
  27. 27.
    Zhou G, Wang D, Li F, Hou P, Yin L, Liu C, Lu G, Gentlec I, Cheng H (2012) A flexible nanostructured Sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ Sci 5:8901–8906CrossRefGoogle Scholar
  28. 28.
    Zhang J, Yan X, Zhang J, Cai W, Wu Z, Zhang Z (2012) Preparation and electrochemical performance of TiO2/C composite nanotubes as anode materials of lithium-ion batteries. J Power Sources 198:223–228CrossRefGoogle Scholar
  29. 29.
    Xiao Z, Yang Z, Wang L, Nie H, Zhong M, Lai Q, Xu X, Zhang L, Huang S (2015) A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast long-life lithium-sulfur batteries. Adv Mater 27:2891–2898CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Research Institute for Energy Equipment MaterialsHebei University of TechnologyTianjinChina
  2. 2.Synergy Innovation Institute of GDUTHeyuanChina

Personalised recommendations