Advertisement

Background, fundamental understanding and progress in electrochemical capacitors

  • Yogesh KumarEmail author
  • Sangeeta Rawal
  • Bhawana Joshi
  • S. A. Hashmi
Review
  • 77 Downloads

Abstract

Supercapacitors means electrochemical capacitors are being considered these days to be a good alternative for the conventional power sources (fuel cells and batteries) in many applications because of their high power density, long cycle life and less charging and discharging time. This review article presents an overview of different types of supercapacitors (electrical double-layer capacitors (EDLCs), pseudocapacitors and hybrid supercapacitors. The device configurations (symmetric, asymmetric and hybrid), the mechanism of charge storing at the surface (ion adsorption for EDLCs and fast surface redox reactions for pseudocapacitors) and the effect of electrode material (activated carbon, carbon aerogels, carbon fabrics, carbide-derived carbons, carbon nanotubes (CNTs), graphene, biomass, etc. for EDLCs and conducting polymers and insertion type compounds for pseudocapacitors) and electrolytes are crucial. Electrolytes used in the supercapacitors also play important role to determine its operating voltage range, energy density, power density, etc. Both the classes of electrolytes, liquid electrolytes (aqueous, organic, ionic liquids) and solid electrolytes (polymer-based electrolytes) are also discussed in the last section of this review. The voltage range, energy density and power density ultimately define their use for different applications namely heavy electric vehicles and portable electronic devices.

Keywords

Electrical double-layer capacitors Bio-resource derived carbon Graphene Electrolytes Metal oxides Lithium ion capacitor 

Notes

Funding information

The authors acknowledge the financial support received from the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (sanction no. ECR/2016/001871) under the scheme Early Career Research Award.

References

  1. 1.
    Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Yang Z, Zhang J, Meyer MCWK, Lu X, Choi D, Lemmon JP, Liu J (2011) Chem Rev 111:3577–3613PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Arepalli S, Fireman HR, Moloney PG, Huffman CB, Nikolaev P, Yowell L, Higgins CD, Turano SP, Kim K, Kohl PA, Ready WJ (2005) JOM 57:26–31CrossRefGoogle Scholar
  4. 4.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic, New YorkCrossRefGoogle Scholar
  5. 5.
    Hashmi SA (2004) Natl Acad Sci Lett 27:27–46Google Scholar
  6. 6.
    Pell WG, Conway BE (2004) J Power Sources 136:334CrossRefGoogle Scholar
  7. 7.
    Kusko A, Dedad (2007) J IEEE Ind Appl Mag 13:66–72CrossRefGoogle Scholar
  8. 8.
    Uzunoglu M, Alam MS (2008) IEEE Trans Energy Convers 23:263–272CrossRefGoogle Scholar
  9. 9.
    Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferrais JP (1994) J Power Sources 47:89–107CrossRefGoogle Scholar
  10. 10.
    Prasad KR, Munichandraiah N (2002) J Power Sources 112:443–451CrossRefGoogle Scholar
  11. 11.
    Chen W, Rakhi RB, Alshareef HN (2013) J Mater Chem A 1:3315–3324Google Scholar
  12. 12.
    Park HW, Kim T, Huh J, Kang M, Lee JE, Yoon H (2012) ACS Nano 6:7624–7633PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chen W, Rakhi RB, Alshareef HN (2013) J Phys Chem C 117:15009–15019CrossRefGoogle Scholar
  14. 14.
    Snook GA, Peng C, Fray DJ, Chen GZ (2007) Electrochem Commun 9:83–88CrossRefGoogle Scholar
  15. 15.
    Zhao J, Wu J, Li B, Du W, Huang Q, Zheng M, Xue H, Pang H (2016) Prog Nat Sci Mater Int 26:237–242CrossRefGoogle Scholar
  16. 16.
    Oliveira HP, Sydlik SA, Swager TM (2013) J Phys Chem C 117:10270–10276CrossRefGoogle Scholar
  17. 17.
    Bose S, Kim NH, Kuila T, Lau KT, Lee JH (2011) Nanotechnology 22:295202 (9pp)PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sharma RK, Rastogi AC, Desu SB (2008) Electrochim Acta 53:7690–7695CrossRefGoogle Scholar
  19. 19.
    Peng C, Zhang SW, Jewell D, Chen GZ (2008) Prog Nat Sci 18:777–788CrossRefGoogle Scholar
  20. 20.
    Hong JI, Yeo IH, Paik WK (2001) J Electrochem Soc 148:A156–A163CrossRefGoogle Scholar
  21. 21.
    Chen WC, Wen TC (2003) J Power Sources 117:273–282CrossRefGoogle Scholar
  22. 22.
    Jang JH, Han S, Hyeon T, Oh SM (2003) J Power Sources 123:79–85CrossRefGoogle Scholar
  23. 23.
    Qin X, Durbach S, Wu GT (2004) Carbon 42:451–453Google Scholar
  24. 24.
    Hashmi SA, Latham RJ, Linford RG, Schlindwein WS (1997) Ionics 3:177–183CrossRefGoogle Scholar
  25. 25.
    Arbizzani C, Mawragostino M, Menechello L (1995) Electrochim Acta 40:2223–2228CrossRefGoogle Scholar
  26. 26.
    Sivaraman P, Thakur A, Kushwaha RK, Ratna D, Samui AB (2006) Electrochem Solid State Lett 9:A435–A438CrossRefGoogle Scholar
  27. 27.
    Zheng JP (1999) Electrochem Solid State Lett 2:359–361CrossRefGoogle Scholar
  28. 28.
    Conway BE, Birss V, Wojtowicz J (1997) J Power Sources 66:1–14CrossRefGoogle Scholar
  29. 29.
    Kumar A, Sanger A, Kumar A, Chandra R (2017) Int J Hydrog Energy 42:6080–6087CrossRefGoogle Scholar
  30. 30.
    Lin C, Ritter JA, Popov BN (1998) J Electrochem Soc 145:4097–4103CrossRefGoogle Scholar
  31. 31.
    Sugimoto W, Ohnuma T, Murakami Y, Takasu Y (2001) Electrochem Solid Stat Lett 4:A145–A147CrossRefGoogle Scholar
  32. 32.
    Lee HY, Goodenough JB (1999) J Solid State Chem 148:81–84CrossRefGoogle Scholar
  33. 33.
    Wang X, Wang X, Huang W, Sebastian PJ, Gamboa S (2005) J Power Sources 140:211–215CrossRefGoogle Scholar
  34. 34.
    Kumar A, Sanger A, Kumar A, Chandra R (2016) Electrochim Acta 220:712–720CrossRefGoogle Scholar
  35. 35.
    Kumar A, Sanger A, Kumar A, Mishra YK, Chandra R (2016) Chem Select 1:3885–3891Google Scholar
  36. 36.
    Kumar A, Sanger A, Kumar A, Mishra YK, Chandra R (2016) Electrochim Acta 222:1761–1769CrossRefGoogle Scholar
  37. 37.
    Min CK, Wu TB, Yang WT, Li CL (2009) Mater Chem Phys 117:70–73CrossRefGoogle Scholar
  38. 38.
    Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Mater Chem Phys 86:239–242CrossRefGoogle Scholar
  39. 39.
    Wang YG, Wang ZD, Xia YY (2005) Electrochim Acta 50:5641–5646CrossRefGoogle Scholar
  40. 40.
    Hu CC, Wang CC, Chang KH (2007) Electrochim Acta 52:2691–2700CrossRefGoogle Scholar
  41. 41.
    Zhao Y, Zhang G, Li HL (2006) Solid State Ionics 177:1335–1339CrossRefGoogle Scholar
  42. 42.
    Dandekar MS, Arabale G, Vijayamohanan K (2005) J Power Sources 141:198–203CrossRefGoogle Scholar
  43. 43.
    Kim HK, Choi SH, Yoon YS, Chang SY, Ok YW, Seong TY (2005) Thin Solid Films 475:54–57CrossRefGoogle Scholar
  44. 44.
    Patil UM, Salunkhe RR, Gurav KV, Lokhande CD (2008) Appl Surf Sci 255:2603–2607CrossRefGoogle Scholar
  45. 45.
    Kulkarni SB, Jamadade VS, Dhawale DS, Lokhande CD (2009) Appl Surf Sci 255:8390–8394CrossRefGoogle Scholar
  46. 46.
    Fan Z, Chen J, Cui K, Sun F, Xu Y, Kuang Y (2007) Electrochim Acta 52:2959–2965CrossRefGoogle Scholar
  47. 47.
    Liu H, He P, Li Z, Liu Y, Li J (2006) Electrochim Acta 51:1925–1931CrossRefGoogle Scholar
  48. 48.
    Luo JM, Gao B, Zhang XG (2008) Mater Res Bull 43:1119–11125CrossRefGoogle Scholar
  49. 49.
    Liu XM, Zhang XG (2004) Electrochim Acta 49:229–232CrossRefGoogle Scholar
  50. 50.
    Ahn YR, Park CR, Jo SM, Kim DY (2007) Appl Phys Lett 90:122106–122108CrossRefGoogle Scholar
  51. 51.
    Gupta V, Kusahara T, Toyama H, Gupta S, Miura N (2007) Electrochem Commun 9:2315–2319CrossRefGoogle Scholar
  52. 52.
    Gao Y, Chen S, Cao D, Wang G, Yin J (2010) J Power Sources 195:1757–1760CrossRefGoogle Scholar
  53. 53.
    Prasad KR, Miura N (2004) Electrochem Commun 6:1004–1008CrossRefGoogle Scholar
  54. 54.
    Tao F, Shen Y, Liang Y, Li H (2007) J Solid State Electrochem 11:853–858CrossRefGoogle Scholar
  55. 55.
    Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Appl Phys 82:599–606CrossRefGoogle Scholar
  56. 56.
    Chen L, Lai Q, Hao Y, Zhao Y, Ji X (2009) J Alloys Compd 467:465–471CrossRefGoogle Scholar
  57. 57.
    Nagrajan N, Zhitomirsky I (2006) J Appl Electrochem 36:1399–1405CrossRefGoogle Scholar
  58. 58.
    Du X, Wang C, Chen M, Jiao Y, Wang J (2009) J Phys Chem C 113:2643–2646CrossRefGoogle Scholar
  59. 59.
    Gao F, Zhang L, Huang S (2010) Mater Lett 64:537–540CrossRefGoogle Scholar
  60. 60.
    Rajeswari J, Kishore PS, Viswanathan B, Varadarajan TK (2009) Electrochem Commun 11:572–575CrossRefGoogle Scholar
  61. 61.
    Gujar TP, Shinde VR, Lokhande CD, Han SH (2006) J Power Sources 161:1479–1485CrossRefGoogle Scholar
  62. 62.
    Lokhande CD, Gujar TP, Shinde VR, Mane RS, Han SH (2007) Electrochem Commun 9:1805–1809CrossRefGoogle Scholar
  63. 63.
    Dubal DP, Dhawale DS, Salunkhe RR, Jamdade VS, Lokhande CD (2010) J Alloys Compd 492:26–30CrossRefGoogle Scholar
  64. 64.
    Kalakodimi RP, Kazumichi K, Miura N (2004) Chem Mater 16:1845–1847CrossRefGoogle Scholar
  65. 65.
    Grupioni AAF, Prashiro E, Lassali TAF (2002) Electrochim Acta 48:407–418CrossRefGoogle Scholar
  66. 66.
    Ammundsen B, Desilvestro J, Groutso T, Hassell D, Metson J, Regan E, Steiner R, Pickering P (2000) J Electrochem Soc 147:4078–4082CrossRefGoogle Scholar
  67. 67.
    Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444–450CrossRefGoogle Scholar
  68. 68.
    Toupin M, Brousse T, Belanger D (2002) Chem Mater 14:3946–3952CrossRefGoogle Scholar
  69. 69.
    Hu CC, Tsou TW (2002) Electrochem Commun 4:105–109CrossRefGoogle Scholar
  70. 70.
    Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109:20207–20214PubMedCrossRefGoogle Scholar
  71. 71.
    Broughton JN, Brett MJ (2004) Electrochim Acta 49:4439–4446CrossRefGoogle Scholar
  72. 72.
    Li X, Li W, Chen X, Shi C (2006) J Cryst Growth 297:387–389CrossRefGoogle Scholar
  73. 73.
    Cao L, Xu F, Liang YY, Li HL (2004) Adv Mater 20:1853–1857CrossRefGoogle Scholar
  74. 74.
    Liu EH, Li W, Li J, Meng XY, Ding R, Tan ST (2009) Mater Res Bull 44:1122–1126CrossRefGoogle Scholar
  75. 75.
    Yoo HN, Park DH, Hwang SJ (2008) J Power Sources 185:1374–1379CrossRefGoogle Scholar
  76. 76.
    Helmholtz HV (1853) Ann Phys (Leipzig) 89:353–377CrossRefGoogle Scholar
  77. 77.
    Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gu HB, Kim JU, Song HW, Park GC, Park BK (2000) Electrochim. Acta 45:1533–1536CrossRefGoogle Scholar
  79. 79.
    Staiti P, Minutoli M, Lufrano F (2002) Electrochim Acta 47:2795–2800CrossRefGoogle Scholar
  80. 80.
    Frackowiak E, Abbas Q, B’eguin F (2013) J Energy Chem 22:226–240CrossRefGoogle Scholar
  81. 81.
    Gouy G (1910) J Phys 4:457–468Google Scholar
  82. 82.
    Chapman DL (1913) Philos Mag 6:475–481CrossRefGoogle Scholar
  83. 83.
    Stern OZ (1924) Elektrochem 30:508–508Google Scholar
  84. 84.
    Marsh H, Reinoso FR (2006) Activated carbon. Elsevier Science & Technology BooksGoogle Scholar
  85. 85.
    Abioye AM, Ani FN (2015) Renew Sust Energ Rev 52:1282–1293CrossRefGoogle Scholar
  86. 86.
    Gao Z, Zhang Y, Song N, Li X (2017) Mater Res Lett 5:69–88CrossRefGoogle Scholar
  87. 87.
    Hatori H, Yamada Y, Shiraishi M (1991) Carbon 30:303–304CrossRefGoogle Scholar
  88. 88.
    Edwards CJC, Hitchen DA, Sharples M (1988) US Patent 4775655Google Scholar
  89. 89.
    Pekala RW, Alviso CT, LeMay JD (1990) J Non-Cryst Solids 125:67–75CrossRefGoogle Scholar
  90. 90.
    Shi H (1996) Electrochim Acta 41:1633–1639CrossRefGoogle Scholar
  91. 91.
    Qu D, Shi H (1998) J Power Sources 74:99–107CrossRefGoogle Scholar
  92. 92.
    E. Frackowiak, (2001) F Beguin. Carbon 39:937–950CrossRefGoogle Scholar
  93. 93.
    Nagakawa H, Shudo A, Miura K (2000) J Electrochem Soc 147:38–42CrossRefGoogle Scholar
  94. 94.
    Portet C, Taberna PL, Simon P, Flahaut E, Robert CL (1998) J Power Sources 74:122–135CrossRefGoogle Scholar
  95. 95.
    Wu FC, Tseng RL, Hu CC, Wang CC (2005) J Power Sources 144:302–309CrossRefGoogle Scholar
  96. 96.
    Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Electrochim Acta 50:2799–2805CrossRefGoogle Scholar
  97. 97.
    Tanahashi I, Yoshida A, Nishino A (1990) Bull Chem Soc Jpn 63:3611–3614Google Scholar
  98. 98.
    Guo Y, Qi J, Jiang Y, Yang S, Yang Z, Xu H (2003) Mater Chem Phys 80:704–709CrossRefGoogle Scholar
  99. 99.
    Li W, Probstle H, Fricke J (2003) J Non-Cryst Solids 325:1–5CrossRefGoogle Scholar
  100. 100.
    Wu NL, Wang SY (2002) J Power Sources 110:233–236CrossRefGoogle Scholar
  101. 101.
    Nian YR, Teng H (2002) J Electrochem Soc 149:A1008–A1014CrossRefGoogle Scholar
  102. 102.
    Yang H, Yoshio M, Ison K, Kuramoto R (2002) Electrochem Solid State Lett 5:A141–A144CrossRefGoogle Scholar
  103. 103.
    Shiraishi S, Kurihra H, Shi L, Nakyama T, Oya A (2002) J Electrochem Soc 149:A855–A861CrossRefGoogle Scholar
  104. 104.
    Wada H, Nohara S, Furukawa N, Inoue H, Sugoh N, Iwasaki H, Morita M, Iwakura C (2004) Electrochim Acta 49:4871–4875CrossRefGoogle Scholar
  105. 105.
    Tien CP, Liang WJ, Kuo PL, Teng HS (2008) Electrochim Acta 53:4505–4511CrossRefGoogle Scholar
  106. 106.
    Chandrasekaran R, Soneda Y, Yamashita J, Kodama M, Hatori H (2008) J Solid State Electrochem 12:1349–1355CrossRefGoogle Scholar
  107. 107.
    Diederich L, Barborini E, Piseri P, Podestà A, Milani P, Schneuwly A, Gallay R (1999) Appl Phys Lett 75:2662–2664CrossRefGoogle Scholar
  108. 108.
    Taberna PL, Simon P, Fauvarque JF (2003) J Electrochem Soc 150:A292–A300CrossRefGoogle Scholar
  109. 109.
    Kimizuka O, Tanaike O, Yamashita J, Hiraoka T, Futaba DN, Hata K, Machida K, Suematsu S, Tamamitsu K, Saeki S, Yamada Y, Hatori H (2008) Carbon 46:1999–2001CrossRefGoogle Scholar
  110. 110.
    Wang G, Shao Z, Yu Z (2007) Nanotechnology 18:205705–205711CrossRefGoogle Scholar
  111. 111.
    Ania CO, Khomenko V, Piñero ER, Parra JB, Béguin F (2007) Adv Funct Mater 17:1828–1836CrossRefGoogle Scholar
  112. 112.
    Pietrzak R, Jurewicz K, Nowicki P, Babeł K, Wachowska H (2007) Fuel 86:1086–1092CrossRefGoogle Scholar
  113. 113.
    Li HQ, Luo JY, Zhou XF, Yu CZ, Xia YY (2007) J Electrochem Soc 154:A731–A736CrossRefGoogle Scholar
  114. 114.
    Arulepp M, Leis J, Latt M, Miller F, Rumma K, Lust E, Burke AF (2006) J Power Sources 162:1460–1466CrossRefGoogle Scholar
  115. 115.
    Gallegos AKC, Rinc’on ME (2006) J Power Sources 162:743–747CrossRefGoogle Scholar
  116. 116.
    Lu W, Henry K, Turchi C, Pellegrino J (2008) J Electrochem Soc 155:A361–A367CrossRefGoogle Scholar
  117. 117.
    Lewandowski A, Galinski M (2004) J Phys Chem Solids 65:281–286CrossRefGoogle Scholar
  118. 118.
    Yuyama K, Masuda G, Yoshida H, Sato T (2006) J Power Sources 162:1401–1408CrossRefGoogle Scholar
  119. 119.
    Frackowiak E, Lota G, Pernak J (2005) J Appl Phys Lett 86:164104-1–164104-3CrossRefGoogle Scholar
  120. 120.
    Lazzari M, Soavi F, Mastragostino M (2008) J Power Sources 178:490–496CrossRefGoogle Scholar
  121. 121.
    Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) J Am Chem Soc 130:2730–2371PubMedCrossRefGoogle Scholar
  122. 122.
    Ue M, Takeda M, Takahashi T, Takehara M (2002) Electrochem Solid State Lett 5:A119–A121CrossRefGoogle Scholar
  123. 123.
    Ue M, Takeda M, Toriumi A, Kominato A, Hagiwara R, Ito Y (2003) J Electrochem Soc 150:A499–A502CrossRefGoogle Scholar
  124. 124.
    McEwen AB, McDevitt SF, Koch VR (1997) J Electrochem Soc 144:L84–L86CrossRefGoogle Scholar
  125. 125.
    Balducci A, Dugas R, Taberna PL, Simon P, Plee D, Mastragostino M, Passerini S (2007) J Power Sources 165:922–927CrossRefGoogle Scholar
  126. 126.
    Katakabe T, Kaneko T, Watanabe M, Fukushima T, Aida T (2005) J Electrochem Soc 152:A1913–A1916CrossRefGoogle Scholar
  127. 127.
    Liu H, He P, Li Z, Liu Y, Li J, Zheng L, Li J (2005) Electrochem Solid State Lett 8:J17–J19CrossRefGoogle Scholar
  128. 128.
    Lewandowski A, Swiderska A (2003) Solid State Ionics 161:243–249CrossRefGoogle Scholar
  129. 129.
    Lavall RL, Borges RS, Calado HDR, Welter C, Trigueiro JPC, Rieumont J, Neves BRA, Silva GG (2008) J Power Sources 177:652–659CrossRefGoogle Scholar
  130. 130.
    Lewandowski A, Zajder M, Frackowiak E, Beguin F (2001) Electrochim Acta 46:2777–2780CrossRefGoogle Scholar
  131. 131.
    Pernaut JM, Goulart G (1995) J Power Sources 55:93–96CrossRefGoogle Scholar
  132. 132.
    Ishikawa M, Morita M, Ihara M, Matsuda Y (1994) J Electrochem Soc 141:1730–1734CrossRefGoogle Scholar
  133. 133.
    Mitra S, Sampath S (2004) Electrochem Solid-State Lett 7:A264–A268CrossRefGoogle Scholar
  134. 134.
    Lewandowski A, Swiderska A (2006) Appl Phys A Mater Sci Process 82:579–584CrossRefGoogle Scholar
  135. 135.
    Lassegues JC, Grondin J, Becker T, Servant L, Hernandez M (1995) Solid State Ionics 77:311–317CrossRefGoogle Scholar
  136. 136.
    Ishikawa M, Morita M, Ihara M, Matsuda Y (1995) Electrochim Acta 40:2217–2222CrossRefGoogle Scholar
  137. 137.
    Hashmi SA, Latham RJ, Linford RG, Schlindwein WS (1997) J Chem Soc Faraday Trans 93:4177–4182CrossRefGoogle Scholar
  138. 138.
    Osaka T, Liu X, Nojima M, Momma T (1999) J Electrochem Soc 146:1724–1729CrossRefGoogle Scholar
  139. 139.
    Osaka T, Liu X, Nojima M (1998) J Power Sources 74:122–128CrossRefGoogle Scholar
  140. 140.
    Matsuda A, Honjo H, Tatsumisago M, Minami T (1998) Solid State Ionics 113:97–102CrossRefGoogle Scholar
  141. 141.
    Matsuda Y, Inone K, Takeuchi H, Okuhama Y (1998) Solid State Ionics 113:103–107CrossRefGoogle Scholar
  142. 142.
    Yang CC, Hsu ST, Chien WC (2005) J Power Sources 152:303–310CrossRefGoogle Scholar
  143. 143.
    Hashmi SA, Kumar A, Tripathi SK (2007) J Phys D Appl Phys 40:6527–6534CrossRefGoogle Scholar
  144. 144.
    Furtado CA, de Souza PP, Silva GG, Matencio T, Pernaut JM (2001) Electrochim Acta 46:1629–1634CrossRefGoogle Scholar
  145. 145.
    Wada H, Yoshikawa K, Nohara S, Furukawa N, Inoue H, Sugoh N, Iwasaki H, Iwakura C (2006) J Power Source 159:1464–1467CrossRefGoogle Scholar
  146. 146.
    Baughman RH, Zakhidov AA, Heer WAD (2002) Science 297:787–792PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Lin C, Ritter JA (1997) Carbon 35:1271–1278CrossRefGoogle Scholar
  148. 148.
    Zanto EJ, Ritter JA, Popov BN (1999) Proc—Electrochem Soc 98–106:71–81Google Scholar
  149. 149.
    Diederich L, Barborini E, Piseri P, Podesta A, Milani P (1999) Appl Phys Lett 75:2662–2664CrossRefGoogle Scholar
  150. 150.
    Chu X, Kinoshita K (1996) Proc—Electrochem Soc (95–29):235–245Google Scholar
  151. 151.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760–1762PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Popov VN (2004) Mater Sci Eng Rep 43:61–102CrossRefGoogle Scholar
  153. 153.
    Sebastien W, Giorgia W, Monica P, Cedric B, Jean-Paul K, Renato B (2005) Angew Chem 117:6516–6520CrossRefGoogle Scholar
  154. 154.
    Barroug A, Glimcher MJ (2002) Orthop Res 20:274–280CrossRefGoogle Scholar
  155. 155.
    Pai P, Nair K, Jamade S, Shah R, Ekshinge V, Jadhav N (2006) Curr Pharma Res J 1:11–15Google Scholar
  156. 156.
    Zha J, He H, Liu T, Li S, Jiao Q (2011) Spectrosc Spectr Anal 31:149–153Google Scholar
  157. 157.
    Su C, Zhou N, Guo P, Xu L (2018) J Nanosci Nanotechnol 18:1811–1817Google Scholar
  158. 158.
    Byrne MT, Gun’ko YK (2010) Adv Mater 22:1672–1688PubMedCrossRefGoogle Scholar
  159. 159.
    Afzal A, Abuilaiwi FA, Habib A, Awais M, Waje SB, Atieh MA (2017) J Power Sources 352:174–186CrossRefGoogle Scholar
  160. 160.
    Pumera M (2009) Chem Eur J 15:4970–4978PubMedCrossRefGoogle Scholar
  161. 161.
    Ghosh A, Lee YH (2012) ChemSusChem 5:480–499PubMedCrossRefGoogle Scholar
  162. 162.
    Bethune DS, Kiang CH, Vires MSD, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Nature 363:605–607CrossRefGoogle Scholar
  163. 163.
    Lin YH, Wei TY, Chien HC, Lu SY (2011) Adv Energy Mater 1:901–907CrossRefGoogle Scholar
  164. 164.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler G, AG CDT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Science 273:483–487PubMedCrossRefGoogle Scholar
  165. 165.
    Yacaman MJ, Yoshida MM, Rendon L, Santiesteban JG (1993) Appl Phys Lett 62:202–204CrossRefGoogle Scholar
  166. 166.
    Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996) Chem Phys Lett 260:471–475CrossRefGoogle Scholar
  167. 167.
    Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480–1482CrossRefGoogle Scholar
  168. 168.
    Liu CY, Bard AJ, Wudl F, Weitz I, Heath JR (1999) Electrochem Solid State Lett 2:577–578CrossRefGoogle Scholar
  169. 169.
    Li CS, Wang DZ, Liang TX, Li GT, Wang XF, Cao MS, Liang J (2003) Sci China Ser E Technol Sci 46:349–354CrossRefGoogle Scholar
  170. 170.
    Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F (2002) Chem Phys Lett 361:35–41CrossRefGoogle Scholar
  171. 171.
    Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Appl Phys Lett 77:2421–2423CrossRefGoogle Scholar
  172. 172.
    Lee JY, An KH, Heo JK, Lee YH (2003) J Phys Chem B 107:8812–8815CrossRefGoogle Scholar
  173. 173.
    Yoon BJ, Jeong SH, Lee KH, Kim HS, Park CG, Han JH (2004) Chem Phys Lett 388:170–174CrossRefGoogle Scholar
  174. 174.
    Frackowiak E, Jurewicz K, Depleux S, Beguin F (2001) J Power Source 97-98:822–825CrossRefGoogle Scholar
  175. 175.
    Sun Y, Wilson SR, Schuster DI (2001) J Am Chem Soc 123:5348–5349PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E (2001) Chem Phys Lett 347:36–40CrossRefGoogle Scholar
  177. 177.
    An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH (2002) J Electrochem Soc 149:A1058–A1062CrossRefGoogle Scholar
  178. 178.
    Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Chem Mater 14:1610–1613CrossRefGoogle Scholar
  179. 179.
    Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray DJ, Windle AH (2002) Adv Mater 14:382–385CrossRefGoogle Scholar
  180. 180.
    Xiao Q, Zhou X (2003) Electrochim Acta 48:575–580CrossRefGoogle Scholar
  181. 181.
    Lota K, Khomenko V, Frackowiak E (2004) J Phys Chem Solids 65:295–301CrossRefGoogle Scholar
  182. 182.
    Zhou Y, He B, Zhou W, Li H (2004) J Electrochem Soc 151:A1052–A1057CrossRefGoogle Scholar
  183. 183.
    An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Adv Funct Mater 11:387–392CrossRefGoogle Scholar
  184. 184.
    Liu T, Sreekumar TV, Kumar S, Hauge RH, Smalley RE (2003) Carbon 41:2440–2442CrossRefGoogle Scholar
  185. 185.
    Pei S, Cheng HM (2012) Carbon 50:3210–3228CrossRefGoogle Scholar
  186. 186.
    Aboutalebi SH, Chidembo AT, Salari M, Konstantinov K, Wexler D, Liu HK, Dou SX (2011) Energy Environ Sci 4:1855–1865CrossRefGoogle Scholar
  187. 187.
    Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang Y (2011) Energy Environ Sci 4:2826–2830CrossRefGoogle Scholar
  188. 188.
    Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) J Phys Chem C 113:13103–13107CrossRefGoogle Scholar
  189. 189.
    Zhang LL, Zhou R, Zhao XS (2010) J Mater Chem 20:5983–5992CrossRefGoogle Scholar
  190. 190.
    Park S, An J, Potts JR, Velamakannia A, Murali S, Ruoff RS (2011) Carbon 49:3019–3023CrossRefGoogle Scholar
  191. 191.
    Zhang Y, Li D, Tan X, Zhang B, Ruan X, Liu H, Pan C, Liao L, Zhai T, Bando Y, Chen S, Cai W, Ruoff RS (2013) Carbon 54:143–148CrossRefGoogle Scholar
  192. 192.
    Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu WW, Voon CH (2017) Procedia Eng 184:469–477CrossRefGoogle Scholar
  193. 193.
    Rattana, Chaiyakun S, Witit-anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P (2012) Procedia Eng 32:759–764CrossRefGoogle Scholar
  194. 194.
    Silva KKHDS, Huang HH, Yoshimura M (2018) Appl Surf Sci 447:338–346CrossRefGoogle Scholar
  195. 195.
    Soldano C, Mahmood A, Dujardin E (2010) Carbon 48:2127–2150CrossRefGoogle Scholar
  196. 196.
    Hayes WI, Joseph P, Mughal MZ, Papakonstantinou P (2015) J Solid State Electrochem 19:361–381CrossRefGoogle Scholar
  197. 197.
    Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) J Mater Chem 20:743–748CrossRefGoogle Scholar
  198. 198.
    Pumera M (2010) Chem Soc Rev 39:4146–4157PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Sheng K, Sun Y, Li C, Yuan W, Shi G (2012) Sci Rep.  https://doi.org/10.1038/srep002475
  200. 200.
    Nabais JMV, Teixeira JG, Almeida I (2011) Bioresour Technol 102:2781–2787PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Nabaiss JV, Carrott P, Carrott MMLR, Luz V, Ortiz AL (2008) Bioresour Technol 99:7224–7231CrossRefGoogle Scholar
  202. 202.
    Aworn A, Thiravetyan P, Nakbanpote W (2008) J Anal Appl Pyrolysis 82:279–285CrossRefGoogle Scholar
  203. 203.
    Nabais JMV, Nunes P, Carrott PJM, Carrott MMLR, García AM, Daiz-Díez MA (2008) Fuel Process Technol 89:262–268CrossRefGoogle Scholar
  204. 204.
    Taer E, Deraman M, Talib IA, Awitdrus A, Hashmi SA, Umar AA (2011) Int J Electrochem Sci 6:3301–3315Google Scholar
  205. 205.
    Kilpimaa S, Runtti H, Kangas T, Lassi U, Kuokkanen T (2015) J Ind Eng Chem 21:1354–1364CrossRefGoogle Scholar
  206. 206.
    Karthikeyan K, Amaresh S, Lee SN, Sun X, Aravindan V, Lee YG, Lee YS (2014) ChemSusChem 7:1435–1442PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Huang W, Zhang H, Huang Y, Wang W, Wei S (2011) Carbon 49:838–843CrossRefGoogle Scholar
  208. 208.
    Wang K, Zhao N, Lei S, Yan R, Tian X, Wang J, Song Y, Xu D, Guo Q, Liu L (2015) Electrochim Acta 166:1–11CrossRefGoogle Scholar
  209. 209.
    Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) ACS Appl Mater Interfaces 4:5800–5806PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Peng C, Yan X-B, Wang R-T, Lang J-W, Ou Y-J, Xue Q-J (2013) Electrochim Acta 87:401–408CrossRefGoogle Scholar
  211. 211.
    Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Bioresour Technol 102(1118):1123Google Scholar
  212. 212.
    Jiang L, Yan J, Hao L, Xue R, Sun G, Yi B (2013) Carbon 56:146–154CrossRefGoogle Scholar
  213. 213.
    Bhattacharjya D, Yu JS (2014) J Power Sources 262:224–231CrossRefGoogle Scholar
  214. 214.
    Hou J, Cao C, Idrees F, Ma X (2015) ACS Nano 9:2556–2564PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Energy Environ Sci 7:379–386CrossRefGoogle Scholar
  216. 216.
    Feng H, Zheng M, Dong H, Xiao Y, Hu H, Sun Z, Long C, Cai Y, Zhao X, Zhang H, Lei B, Liu Y (2015) J Mater Chem A 3:15225–15234CrossRefGoogle Scholar
  217. 217.
    Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Adv Energy Mater 1:356–361CrossRefGoogle Scholar
  218. 218.
    Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C (2012) Bioresour Technol 111:185–190PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Rawal S, Joshi B, Kumar Y (2018) J Energy Storage 20:418–426CrossRefGoogle Scholar
  220. 220.
    Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, Manjunatha JM, Ishak MM, Dollah BNM, Hashmi SA (2013) Bioresour Technol 132:254–261PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Rufford TE, Jurcakova DH, Zhu Z, Lu GQ (2008) Electrochem Commun 10:1594–1597CrossRefGoogle Scholar
  222. 222.
    Kyotani T, Ma Z, Tomita A (2003) Carbon 41:1451–1459CrossRefGoogle Scholar
  223. 223.
    Juan Y, Ke-qiang Q (2009) Environ Sci Technol 43:3385–3390PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Carbon 38:1873–1878CrossRefGoogle Scholar
  225. 225.
    Zhao S, Li C, Wang W, Zhang H, Gao M, Xiong X, Wang A, Yuan K, Huang Y, Wang F (2013) J Mater Chem A 1:3334–3339CrossRefGoogle Scholar
  226. 226.
    Wu X, Jiang L, Long C, Fan Z-J (2015) Nano Energy 13:527–536CrossRefGoogle Scholar
  227. 227.
    Li X, Han C, Chen X, Shi C (2010) Microporous Mesoporous Mater 131:303–309CrossRefGoogle Scholar
  228. 228.
    Qu W-H, Xu Y-Y, Lu A-H, Zhang X-Q, Li W-C (2015) Bioresour Technol 189:285–291PubMedCrossRefGoogle Scholar
  229. 229.
    Zhu H, Wang X, Yang F, Yang X (2011) Adv Mater 23:2745–2748PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Wang H, Li Z, Mitlin D (2014) ChemElectroChem 1:332–337CrossRefGoogle Scholar
  231. 231.
    Liang Q, Ye L, Huang Z-H, Xu Q, Bai Y, Kang F, Yang Q-H (2014) Nanoscale 6:13831–13837PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Xu B, Hou S, Cao G, Wu F, Yang Y (2012) J Mater Chem 22:19088–19093CrossRefGoogle Scholar
  233. 233.
    Beguin F, Frackowiak (2013) Supercapacitors: materials, systems and applications. WILEY-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  234. 234.
    Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27CrossRefGoogle Scholar
  235. 235.
    Wang KQ, Yan J, Wang Y, Ning G, Fana Z, Wei T, Cheng J, Zhang M, Jing X (2013) Carbon 52:209–218CrossRefGoogle Scholar
  236. 236.
    Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amor’os D, Linares-Solano A, B’eguin F (2005) Carbon 43:786–795CrossRefGoogle Scholar
  237. 237.
    Laforgue A, Simon P, Sarrazin C, Fauvarque JF (1999) J Power Sources 80:142–148CrossRefGoogle Scholar
  238. 238.
    Evans D (1994) US patent 5369547Google Scholar
  239. 239.
    Naoi K, Simon P (2008) The electrochemical society interface. Spring:34–37Google Scholar
  240. 240.
    Amatucci GG, Badway F, Pasquier AD, Zheng T (2001) J Electrochem Soc 148:A930–A939CrossRefGoogle Scholar
  241. 241.
    Plitz I, Pasquier AD, Badway F, Gural J, Pereira N, Gmitter A, Amatucci GG (2006) Appl Phys A 82:615–626CrossRefGoogle Scholar
  242. 242.
    Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366–377PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Wang G, Zhang L, Zhang (2012) J Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  244. 244.
    Krause A, Balducci A (2011) Electrochem Commun 13:814–817CrossRefGoogle Scholar
  245. 245.
    Galinski M, Lewandowski A, Stepniak I (2006) Electrochim Acta 51:5567–5580CrossRefGoogle Scholar
  246. 246.
    Carche J, Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B (2009) Encyclopedia of electrochemical power sources. Elsevier BVGoogle Scholar
  247. 247.
    Lewandowski A, Galin’ski M (2004) J Phys Chem Solids 64:281–286CrossRefGoogle Scholar
  248. 248.
    Niu J, Pell WG, Conway BE (2006) J Power Sources 156:725–740CrossRefGoogle Scholar
  249. 249.
    MacCallum JR (1987-1989) In: Vincent CA (ed) Polymer electrolyte reviews, vol 1 & 2. Elsevier, LondonGoogle Scholar
  250. 250.
    Pandey GP, Kumar Y, Hashmi SA (2010) Indian J Chem 49A:743–751Google Scholar
  251. 251.
    Groce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B (2004) Electrochim Acta 39:2187–2194CrossRefGoogle Scholar
  252. 252.
    Michot T, Nishimoto A, Watanabe M (2000) Electrochim Acta 45:1347–1360CrossRefGoogle Scholar
  253. 253.
    Stephan AM (2006) Eur Polym J 42:21–42CrossRefGoogle Scholar
  254. 254.
    Agrawal RC, Pandey GP (2008) J Phys D Appl Phys 41:223001–223018CrossRefGoogle Scholar
  255. 255.
    Jiang J, Gao D, Li Z, Su G (2006) React Funct Polym 66:1141–1148CrossRefGoogle Scholar
  256. 256.
    Capiglia C, Saito Y, Kataoka H, Kodama T, Quartarone E, Mustarelli P (2000) Solid State Ionics 131:291–299CrossRefGoogle Scholar
  257. 257.
    Lalia BS, Yoshimoto N, Egashira M, Morita M (2009) J Power Sources 194:531–535CrossRefGoogle Scholar
  258. 258.
    Sato T, Banno K, Maruo T, Nozu R (2005) J Power Sources 152:264–271CrossRefGoogle Scholar
  259. 259.
    Pandey GP, Hashmi SA (2009) J Power Sources 187:627–634CrossRefGoogle Scholar
  260. 260.
    Sirisopanaporni C, Fernicola A, Scrosati B (2009) J Power Sources 186:490–495CrossRefGoogle Scholar
  261. 261.
    Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigand P (1983) Solid State Ion 11:91–95CrossRefGoogle Scholar
  262. 262.
    Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG (2001) Nature 412:520–523PubMedCrossRefGoogle Scholar
  263. 263.
    MacCallum JR (1987–1989) In: Vincent CA (ed) Polymer electrolyte reviews—1 & 2. Elsevier Applied Science, LondonGoogle Scholar
  264. 264.
    Gray FM (1991) Solid polymer electrolytes: fundamental and technological applications. VCH Publishers, New YorkGoogle Scholar
  265. 265.
    Gray FM (1997) Polymer electrolytes. Royal Society of Chemistry, CambridgeGoogle Scholar
  266. 266.
    Alamgir M, Abraham KM (1994) In: Pistoia G (ed) Lithium batteries: new materials, developments and perspectives. Elsevier, AmsterdamGoogle Scholar
  267. 267.
    Fenton DE, Parker JM, Wright PV (1973) Polymer 14:589CrossRefGoogle Scholar
  268. 268.
    Scrosati B, Vincent CA (2000) MRS Bull 25:28–30CrossRefGoogle Scholar
  269. 269.
    Jacob MME, Hackett E, Giannelis EP (2003) J Mater Chem 13:1–5CrossRefGoogle Scholar
  270. 270.
    Armand MB (1990) Adv Mater 2:278–288CrossRefGoogle Scholar
  271. 271.
    Angell CA, Xu K, Zhang SS, Videa M (1996) Solid State Ionics 86-88:17–28CrossRefGoogle Scholar
  272. 272.
    Polak AJ (1989) In: Margolis JM (ed) Conducting polymers and plastics. Chapman and Hall, LondonGoogle Scholar
  273. 273.
    Ivory DM, Miller GG, Sowa JM, Schacklette LW, Chance RR, Boughman RH (1979) J Chem Phys 71:1506–1507CrossRefGoogle Scholar
  274. 274.
    Hardy LC, Shriver DF (1986) J Am Chem Soc 108:2887–2893CrossRefGoogle Scholar
  275. 275.
    Feuillade G, Perche P (1975) J Appl Electrochem 5:63–69CrossRefGoogle Scholar
  276. 276.
    Chintapalli S, Frech R (1996) Solid State Ionics 86-88:341–346CrossRefGoogle Scholar
  277. 277.
    Tsuchida E, Ohno H, Tsunemi K (1983) Electrochim Acta 28:591–595CrossRefGoogle Scholar
  278. 278.
    Mohamed NS, Arof AK (2004) J Power Sources 132:229–234CrossRefGoogle Scholar
  279. 279.
    Watanabe M, Kanba M, Nagaoka K, Shinohara I (1982) J Appl Polym Sci 27:4191–4198CrossRefGoogle Scholar
  280. 280.
    Wang Z, Huang B, Huang H, Xue R, Chen L, Chen FA (1996) J Electrochem Soc 143:1510–1514CrossRefGoogle Scholar
  281. 281.
    Appetecchi GB, Croce F, Scrosati B (1995) Electrochim Acta 40:991–997CrossRefGoogle Scholar
  282. 282.
    Kumar D, Hashmi SA (2010) J Power Source 195:5101–5108CrossRefGoogle Scholar
  283. 283.
    Selvakumar M, Bhat DK (2008) J Appl Polym Sci 110:594–602CrossRefGoogle Scholar
  284. 284.
    Saika D, Kumar A (2004) Electrochim Acta 49:2581–2589CrossRefGoogle Scholar
  285. 285.
    Domine LA (1994) In: Pistoia G (ed) Lithium batteries—new materials, developments and perspectives. Elsevier, p 114Google Scholar
  286. 286.
    North JM (1998) European Patent No. EP0279554 A2Google Scholar
  287. 287.
    Rhee HW, Jung WI, Song MK, Oh SY, Choi JW (1997) Mol Cryst Liq Cryst Sci Technol Sect A 294:225–228CrossRefGoogle Scholar
  288. 288.
    Ballard DGH, Cheshire P, Mann TS, Przeworksi JE (1990) Macromolecules 23:1256–1264CrossRefGoogle Scholar
  289. 289.
    Morita M, Fukumas T, Motoda M, Tsutsumi H, Matsuda Y, Takahashi T, Ashitaka H (1990) J Electrochem Soc 137:3401–3404CrossRefGoogle Scholar
  290. 290.
    Xia DW, Solltz D, Smid J (1984) Solid State Ionics 14:221–224CrossRefGoogle Scholar
  291. 291.
    DuPasquier A, Sarrazin C, Andrien X, Fauvarque JF (1997) Lithium polymer batteries. In: Broadhead J, Scrosati B (eds) Proc. Vol. 96/17. The Electrochemical SocietyGoogle Scholar
  292. 292.
    Croce F, Gerace F, Dautzeberg G, Passerini S, Appetecchi GB, Scrosati B (1994) Electrochim Acta 39:2187–2194CrossRefGoogle Scholar
  293. 293.
    Tarascon JM, Gozdz AS, Schmutz CN, Shokoohi F, Warren PC (1996) Solid State Ionics 86-88:49–54CrossRefGoogle Scholar
  294. 294.
    Ohno H (2005) Electrochemical aspects of ionic liquids. Wiley, New JerseyCrossRefGoogle Scholar
  295. 295.
    Egashira M, Todo H, Yoshimoto N, Morita M (2008) J Power Sources 178:729–735CrossRefGoogle Scholar
  296. 296.
    Wei D, Wakeham SJ, Ng TW, Thwaites MJ, Brown H, Beecher P (2009) Electrochem Commun 11:2285–2287CrossRefGoogle Scholar
  297. 297.
    Sekhon SS, Lalia BS, Park JS, Kim CS, Yamada K (2006) J Mater Chem 16:2256–2265CrossRefGoogle Scholar
  298. 298.
    Weston JE, Steele BCH (1982) Solid State Ionics 7:75–79CrossRefGoogle Scholar
  299. 299.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456–458CrossRefGoogle Scholar
  300. 300.
    Alarco PJ, Lebdeh YA, Abouimrane A, Armand M (2004) Nat Mater 3:476–481PubMedCrossRefPubMedCentralGoogle Scholar
  301. 301.
    Fan LZ, Wang XL, Long F (2009) J Power Sources 189:775–778CrossRefGoogle Scholar
  302. 302.
    Fan LZ, Maier J (2006) Electrochem Commun 8:1753–1756CrossRefGoogle Scholar
  303. 303.
    Das S, Prathapa SJ, Menezes PV, Row TNG, Bhattacharyya AJ (2009) J Phys Chem B 113:5025–5031PubMedCrossRefPubMedCentralGoogle Scholar
  304. 304.
    Patel M, Menezes PV, Bhattacharyya AJ (2010) J Phys Chem B 114:5233–5240PubMedCrossRefPubMedCentralGoogle Scholar
  305. 305.
    Fan LZ, Hu YS, Bhattacharyya AJ, Maier (2007) J Adv Funct Mater 17:2800–2807CrossRefGoogle Scholar
  306. 306.
    Huang J, Hill A, Forsyth M, MacFarlane D, Hollenkamp A (2006) Solid State Ionics 177:2569–2573CrossRefGoogle Scholar
  307. 307.
    Long S, MacFarlane DR, Forsyth M (2004) Solid State Ionics 175:733–738CrossRefGoogle Scholar
  308. 308.
    Eijck LV, Best AS, Long S, Alonso FF, MacFarlane D, Forsyth M, Kearley GJ (2009) J Phys Chem C 113:15007–15013CrossRefGoogle Scholar
  309. 309.
    Timmermans J (1961) J Phys Chem Solids 18:1–8CrossRefGoogle Scholar
  310. 310.
    Derollez P, Lefebvre J, Descamps M, Press W, Fontaine H (1990) J Phys Condens Matter 2:6893–6903CrossRefGoogle Scholar
  311. 311.
    MacFarlane DR, Forsyth M (2001) Adv Mater 13:957–966CrossRefGoogle Scholar
  312. 312.
    Hore S, Dinnebier R, Wen W, Hanson J, Maier J (2009) Z Anorg Allg Chem 635:88–93CrossRefGoogle Scholar
  313. 313.
    Fengler OI, Ruoff A (2001) Spectrochim Acta A 57:105–117CrossRefGoogle Scholar
  314. 314.
    Lebdeh YA, Alarco PJ, Armand M (2004) J New Mat Electrochem Syst 8:197–201Google Scholar
  315. 315.
    Kunze M, Jeong S, Appetecchi GB, Schönhoff M, Winter M, Passerini S (2012) Electrochim Acta 82:69–74CrossRefGoogle Scholar
  316. 316.
    Iijima S (1991) Nature 354:56–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yogesh Kumar
    • 1
    Email author
  • Sangeeta Rawal
    • 2
  • Bhawana Joshi
    • 2
  • S. A. Hashmi
    • 3
  1. 1.Department of PhysicsARSD College University of DelhiNew DelhiIndia
  2. 2.Department of Applied PhysicsGautam Buddha UniversityGreater NoidaIndia
  3. 3.Department of Physics & AstrophysicsUniversity of DelhiNew DelhiIndia

Personalised recommendations