Advertisement

Highly selective solid-state sensor for iodide based on the combined use of platinum (IV) phthalocyanine and solidified pyridinium ionic liquid

  • Natalya V. Shvedene
  • Mikhail N. Abashev
  • Suren A. Arakelyan
  • Katerina N. Otkidach
  • Larisa G. Tomilova
  • Igor V. PletnevEmail author
Original Paper
  • 20 Downloads

Abstract

Solid-state iodide-selective electrodes based on the commercial screen-printed electrodes modified with readily available low-melting ionic material (ionic liquid solidifying at room temperature), such as N-cetylpyridinium bromide, CPBr, and a specially synthesized metallo-complex, namely, platinum (IV) phthalocyanine, PctPtCl2, are obtained. For comparison, PVC-membrane ion-selective electrodes (ISE) based on the same compounds and solid-state ISEs with other solid matrices (N-cetylpyridinium chloride, 1,3-dicetylimidazolium iodide) are studied. Plasticized PVC-membrane ISEs exhibit normal selectivity corresponding to the Hofmeister series: interfering effect of large hydrophobic ions (perchlorate, dodecyl sulfate, etc.) is significant. Incorporation of PctPtCl2 metallo-complex into plasticized membranes improves selectivity to a certain extent, but not dramatically. At the same time, the CPBr-based solid-state ISEs demonstrate high selectivity toward iodide even in the presence of hydrophobic anions: the interfering effect of perchlorate and dodecyl sulfate decreases by 3 and 6 orders of magnitude, respectively. The introduction of the metallo-complex into the matrix improves selectivity even more significantly. The CPBr-PctPtCl2-based solid-state sensor demonstrates a reversible and reproducible response to iodide. The electrode function slope S = − (54 ± 1) mV/dec, Cmin = 1.9 × 10−5 M, response time is 5–10 s.

Keywords

Ion-selective electrodes Iodide-selective electrodes Platinum phthalocyanine Ionic liquids Low-melting ionic materials N-Cetylpyridinium chloride N-Cetylpyridinium bromide 1,3-Dicetylimidazolium iodide Iodide Synthesis of platinum (IV) phthalocyanine 

Notes

Acknowledgements

The authors are grateful to Dr. V.E. Baulin for providing dicetylimidazolium ionic liquid and to Prof. A.A. Karyakin who kindly provided screen-printed planar electrodes.

Funding information

The work was supported by the Russian Science Foundation (project 17-13-01197).

References

  1. 1.
    Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108(2):329–351CrossRefGoogle Scholar
  2. 2.
    Pechenkina IA, Mikhelson KN (2015) Materials for the ionophore-based membranes for ion-selective electrodes: problems and achievements. Russ J Electrochem 51(2):93–102CrossRefGoogle Scholar
  3. 3.
    Koel M (ed) (2016) Analytical applications of ionic liquids. World Scientific Publishing Europe Ltd., London, pp 339–360CrossRefGoogle Scholar
  4. 4.
    Malinowska E, Meyerhoff ME (1995) Role of axial ligation on potentiometric response of Co (III) tetraphenylporphyrin-doped polymeric membranes to nitrite ions. Anal Chim Acta 300(1-3):33–43CrossRefGoogle Scholar
  5. 5.
    Malinowska E, Górski Ł, Meyerhoff ME (2002) Zirconium (IV)-porphyrins as novel ionophores for fluoride-selective polymeric membrane electrodes. Anal Chim Acta 468(1):133–141CrossRefGoogle Scholar
  6. 6.
    Skripnikova TA, Starikova AA, Shumilova GI, Ermolenko YE, Pendin AA, Mourzina YG (2017) Towards stabilization of the potential response of Mn (III) tetraphenylporphyrin-based solid-state electrodes with selectivity for salicylate ions. J Solid State Electrochem 21(8):2269–2279CrossRefGoogle Scholar
  7. 7.
    Amini MK, Shahrokhian S, Tangestaninejad S (1999) PVC-based Mn (III) porphyrin membrane-coated graphite electrode for determination of histidine. Anal Chem 71(13):2502–2505CrossRefGoogle Scholar
  8. 8.
    Mitchell-Koch JT, Pietrzak M, Malinowska E, Meyerhoff ME (2006) Aluminum (III) porphyrins as ionophores for fluoride selective polymeric membrane electrodes. Electroanalysis 18(6):551–557CrossRefGoogle Scholar
  9. 9.
    Shvedene NV, Otkidach KN, Gumerov MR, Tarakanov PA, Tomilova LG (2015) New metalloporphyrazines as active components of membranes of anion-selective electrodes. J Anal Chem 70(1):72–80CrossRefGoogle Scholar
  10. 10.
    Leyzerovich NN, Shvedene NV, Blikova YN, Tomilova LG, Pletnev IV (2001) Comparative study of the metal phthalocyanates as active components in salicylate-selective electrodes. Electroanalysis 13(3):246–252CrossRefGoogle Scholar
  11. 11.
    Shvedene NV, Leizerovich NN, Rybakova MM, Kostalyndina EV, Koval YA, Pletniov IV (2000) Aluminium (III) phthalocyanine as an active component of salicylate-selective membrane electrode. Vestn Mosk Univ Seriya 2 Khimiya 41:34–36Google Scholar
  12. 12.
    Galal A, Darwish SA, Ahmed RA (2007) Hybrid organic/inorganic films of conducting polymers modified with phthalocyanines. I—film preparation and voltammetric studies. J Solid State Electrochem 11(4):521–530CrossRefGoogle Scholar
  13. 13.
    Akinbulu IA, Ozoemena KI, Nyokong T (2011) Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes. J Solid State Electrochem 15(10):2239–2251CrossRefGoogle Scholar
  14. 14.
    Hebié S, Bayo-Bangoura M, Bayo K, Servat K, Morai C, Napporn TW, Kokoh KB (2016) Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution. J Solid State Electrochem 20(4):931–942CrossRefGoogle Scholar
  15. 15.
    Nyoni S, Mashaz P, Nyokong T (2016) Electrode modification using nanocomposites of electropolymerised cobalt phthalocyanines supported on multiwalled carbon nanotubes. J Solid State Electrochem 20(4):1075–1086CrossRefGoogle Scholar
  16. 16.
    Pavez J, Páez M, Ringuedé A, Bedioui F, Zagal JH (2005) Effect of film thickness on the electro-reduction of molecular oxygen on electropolymerized cobalt tetra-aminophthalocyanine films. J Solid State Electrochem 9(1):21–29CrossRefGoogle Scholar
  17. 17.
    Bakker E, Malinowska E, Schiller RD, Meyerhoff ME (1994) Anion-selective membrane electrodes based on metalloporphyrins: the influence of lipophilic anionic and cationic sites on potentiometric selectivity. Talanta 41(6):881–890CrossRefGoogle Scholar
  18. 18.
    Rzhevskaia AV, Shvedene NV, Pletnev IV (2014) Solidified ionic liquid as crystalline sensing element of the bromide selective electrode. Sens Actuators B Chem 193:563–567CrossRefGoogle Scholar
  19. 19.
    Otkidach KN, Shvedene NV, Tarakanov PA, Tomilova LG, Pletnev IV (2016) Cobalt (II) porphyrazine as an active component of iodide-selective electrodes. Mosc Univ Chem Bull 71(4):270–276CrossRefGoogle Scholar
  20. 20.
    Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607(2):126–135CrossRefGoogle Scholar
  21. 21.
    Shvedene NV, Chernyshev DV, Gromova YP, Nemilova MY, Pletnev IV (2010) Hydrophobic ionic liquids in plasticized membranes of ion-selective eletctrodes. J Anal Chem 65(8):861–865CrossRefGoogle Scholar
  22. 22.
    Shvedene NV, Rzhevskaia AV, Pletnev IV (2012) Ionic liquids based on quaternary phosphonium cation as active components of solid-state iodide selective electrode. Talanta 102:123–127CrossRefGoogle Scholar
  23. 23.
    Shvedene NV, Avramenko OA, Baulin VE, Tomilova GL, Pletnev IV (2011) Iodide-selective screen-printed electrodes based on low-melting ionic solids and metallated phthalocyanine. Electroanalysis 23(5):1067–1072CrossRefGoogle Scholar
  24. 24.
    Paradies HH, Habben F (1993) Structure of N-hexadecylpyridinium chloride monohydrate. Acta Crystallogr C 49:744–747CrossRefGoogle Scholar
  25. 25.
    Ballirano P, Caminiti R, Sadun C, Coiro VM, Mancini G, Mara A (2010) Single crystal structure determination of cetylpyridiniumammonium bromide and Rietveld structure determination of cetylquinuclidinium bromide. Z Für Krist—Cryst Mater 213:123–129Google Scholar
  26. 26.
    Tolbin AYu, Pushkarev VE, Tomilova LG (2012) Methodology for the selective synthesis of homo-and heteroligand phthalocyanine complexes. The chapter in the book - "Organic Chemistry in the Works of NS Zefirov". Gilem. Ufa. Bashkartostan. 296 р.Google Scholar
  27. 27.
    Tolbin AY, Tomilova LG (2011) Subphthalocyanines and their analogues: methods for the synthesis and structure modification. Russ Chem Rev 80(6):531–551CrossRefGoogle Scholar
  28. 28.
    Balashova IO, Pushkarev VE, Shestov VI, Tomilova LG, Koifman OI, Ponomarev GV (2015) Synthesis and spectral properties of phthalocyanine–methylpheophorbide a covalently linked dyad. Macroheterocycles 8(3):233–238CrossRefGoogle Scholar
  29. 29.
    Kamman K (1980) Work with ion-selective electrodes. Mir, MoscowGoogle Scholar
  30. 30.
    Currie LA, Svehla G (1994) Nomenclature for the presentation of results of chemical analysis (IUPAC Recommendations 1994). Pure Appl Chem 66(3):595–608CrossRefGoogle Scholar
  31. 31.
    Lindner E, Umezawa Y (2008) Performance evaluation criteria for preparation and measurement of macro- and microfabricated ion-selective electrodes (IUPAC technical report). Pure Appl Chem 80:85–104CrossRefGoogle Scholar
  32. 32.
    Wilkes J (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4(2):73–80CrossRefGoogle Scholar
  33. 33.
    Egorov VV, Lyaskovskii PL, Taribo MG, Nazarov VA, Rahman’ko EM, Stanishevskii LS, Okaev EB (2010) Influence of the nature of liquid anion exchanger on the selectivity of anion selective electrodes. J Anal Chem 65(11):1181–1190CrossRefGoogle Scholar
  34. 34.
    Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Arch Für Exp Pathol Pharmakol 25(1):1–30CrossRefGoogle Scholar
  35. 35.
    Kunz W, Henle J, Ninham BW (2004) ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9(1-2):19–37CrossRefGoogle Scholar
  36. 36.
    Arvand-Barmchia M, Mousavi ME, Zanjanchi MA, Shamsipur M (2013) A new dodecylsulfate-selective supported liquid membrane electrode based on its N-cetylpyridinium ion-pair. Microchem J 74:149–156CrossRefGoogle Scholar
  37. 37.
    Ganjali MR, Poursaberi T, Hosseini N, Salavati-Niasary N, Yousefi M, Shamsipur N (2002) Highly selective iodede membrane electrode based on a cerium salen. Anal Sci 18:289–292CrossRefGoogle Scholar
  38. 38.
    Farhadi K, Maleki R, Yamchi RH, Sharghi H, Shamaipur M (2004) [Tetrakis(4-N,N-dimethyiaminobenzene)porphyrinato]-maganese (III) acetate as a novel carrier for a selective iodide PVC membrane electrode. Anal Sci 20(5):805–809CrossRefGoogle Scholar
  39. 39.
    Jeong DC, Lee HK, Jeon S-W (2006) Polymeric iodide-ion selective electrode based on urea derivative as a ionophore. Bull Kor Chem Soc 27:1985–1988CrossRefGoogle Scholar
  40. 40.
    Pouretedal HR, Keshavarz MN (2004) Copper(I)-bathocuproine complex as carrier in iodide-selective electrode. Talanta 62(1):221–225CrossRefGoogle Scholar
  41. 41.
    Lisina SV, Lyakhov AI (2013) Qualitative and quantitative determination of iodide content in medicinal preparations and table salt. Sovremennie Naukoemie Technologii (in Russian) 9:82–84Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Natalya V. Shvedene
    • 1
  • Mikhail N. Abashev
    • 1
  • Suren A. Arakelyan
    • 1
  • Katerina N. Otkidach
    • 1
  • Larisa G. Tomilova
    • 1
  • Igor V. Pletnev
    • 1
    Email author
  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations