Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 497–502 | Cite as

Analysis of discrete spectra of electrochemical noise of lithium power sources

  • A. L. Klyuev
  • B. M. GrafovEmail author
  • A. D. Davydov
  • V. P. Lukovtsev
  • E. M. Petrenko
Original Paper
  • 39 Downloads

Abstract

The Fourier, Daubechies, and Chebyshev transforms are used to analyze discrete spectra of electrochemical noise of lithium power sources under the open-circuit conditions. In the absence of trend of open-circuit voltage, all three approaches lead to similar estimates of intensity of discrete spectra of electrochemical noise of lithium power sources. A trend of open-circuit voltage has different effects on the Fourier, Daubechies, and Chebyshev spectra. The Fourier spectrum is most sensitive to a trend of open-circuit voltage; the Chebyshev spectrum is most resistant to the trend. The Daubechies spectrum occupies an intermediate position between the Fourier spectrum and the Chebyshev spectrum in the resistance to the trend of open-circuit voltage.

Keywords

Lithium power sources Electrochemical noise Trend of open-circuit voltage Fourier discrete noise spectra Daubechies discrete noise spectra Chebyshev discrete noise spectra 

Notes

Funding information

This work was partially supported by the Russian Foundation for Basic Research, project no. 16-29-09375.

References

  1. 1.
    Cheng YF, Luo JL, Wilmott M (2000) Spectral analysis of electrochemical noise with different transient shapes. Electrochim Acta 45(11):1763–1771CrossRefGoogle Scholar
  2. 2.
    Cottis RA (2001) Interpretation of electrochemical noise data. Corrosion 57(3):265–285CrossRefGoogle Scholar
  3. 3.
    Bosch RW, Cottis RA, Csecs K, Dorsch T, Dunbar L, Heyn A, Macak J (2014) Reliability of electrochemical noise measurements: results of round-robin testing on electrochemical noise. Electrochim Acta 120:379–389CrossRefGoogle Scholar
  4. 4.
    Giriga S, Mudali UK, Raju VR, Raj B (2005) Electrochemical noise technique for corrosion assessment-a review. Corros Rev 23(2–3):107–170Google Scholar
  5. 5.
    Huet F (2006) Electrochemical noise technique. In: Marcus P, Mansfeld F (eds) Analytical methods in corrosion science and engineering. Taylor & Francis Group, CRC Press, Boca Raton, p 508Google Scholar
  6. 6.
    Roberge PR, Halliop E, Farrington MD (1991) Monitoring voltage fluctuations for the characterization of lithium cells. J Power Sources 34(3):233–241CrossRefGoogle Scholar
  7. 7.
    Grafov BM, Kanevskii LS, Astafiev MG (2005) Noise characterization of surface processes of the Li/organic electrolyte interface. J Appl Electrochem 35(12):1271–1276CrossRefGoogle Scholar
  8. 8.
    Kanevskii LS, Grafov BM, Astafiev MG (2005) Dynamics of electrochemical noise of the lithium electrode in aprotic organic electrolytes. Russ J Electrochem 41(10):1091–1096CrossRefGoogle Scholar
  9. 9.
    Astafiev MG, Kanevskii LS, Grafov BM (2006) Electrochemical noise of a lithium electrode in organic electrolytes: a study by a correlation function method. Russ J Electrochem 42(5):523–530CrossRefGoogle Scholar
  10. 10.
    Martemianov S, Maillard F, Thomas A, Lagonotte P, Madier L (2016) Noise diagnostics of commercial Li-ion batteries using high-order moments. Russ J Electrochem 52:1120–1130CrossRefGoogle Scholar
  11. 11.
    Lee S, Kim J (2015) Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles. Energy 83:462–473CrossRefGoogle Scholar
  12. 12.
    Martemianov S, Adiutantov N, Evdokimov YK, Madier L, Maillard F, Thomas A (2015) New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries. J Solid State Electrochem 19(9):2803–2810CrossRefGoogle Scholar
  13. 13.
    Mansfeld F, Sun Z, Hsu CH, Nagiub A (2001) Concerning trend removal in electrochemical noise measurements. Corros Sci 43(2):341–352CrossRefGoogle Scholar
  14. 14.
    Bertocci U, Huet F, Nogueira RP, Rousseau P (2002) Drift removal procedures in the analysis of electrochemical noise. Corrosion 58(4):337–347CrossRefGoogle Scholar
  15. 15.
    Homborg AM, Tinga T, Zhang X, Van Westing EPM, Oonincx PJ, De Wit JHW, Mol JMC (2012) Time–frequency methods for trend removal in electrochemical noise data. Electrochim Acta 70:199–209Google Scholar
  16. 16.
    Xia DH, Behnamian Y (2015) Electrochemical noise: a review of experimental setup, instrumentation and DC removal. Russ J Electrochem 51(7):593–601CrossRefGoogle Scholar
  17. 17.
    Vaseghi S (1996) Advanced signal processing and digital noise reduction. Wiley and B.G. Teubner, N.Y. Chapter 8Google Scholar
  18. 18.
    Naidu PS (1996) Modern spectrum analysis of time series. CRC Press, New YorkGoogle Scholar
  19. 19.
    Rao SS (2017) A course in time series analysis, technical report. Texas A&M University, College StationGoogle Scholar
  20. 20.
    Schuster A (1898) On the investigation of hidden periodicities with application to supposed 26 day period of meteorological phenomena. Terr Magn 3(1):13–41CrossRefGoogle Scholar
  21. 21.
    Bartlett MS (1950) Periodogram analysis and continuous spectra. Biometrica 37(1–2):1–16CrossRefGoogle Scholar
  22. 22.
    Mallat S (1999) A wavelet tour of signal processing. Academic, New YorkGoogle Scholar
  23. 23.
    Nikiforov AV, Suslov SK, Uvarov VB (1991) Classical orthogonal polynomials of a discrete variable. Springer, BerlinCrossRefGoogle Scholar
  24. 24.
    Gogin N, Hirversalo M (2007) On generating function of discrete Chebyshev polynomials. Technical Report No. 819. Turku Centre for Computer Science, TurkuGoogle Scholar
  25. 25.
    Astaf’ev MG, Kanevskii LS, Grafov BM (2007) Analyzing electrochemical noise with Chebyshev’s discrete polynomials. Russ J Electrochem 43(1):17–24CrossRefGoogle Scholar
  26. 26.
    Grafov BM, Dobrovol’skii YA, Davydov AD, Ukshe AE, Klyuev AL, Astaf’ev EA (2015) Electrochemical noise diagnostics: analysis of algorithm of orthogonal expansions. Russ J Electrochem 51(6):503–507CrossRefGoogle Scholar
  27. 27.
    Grafov B, Klyuev A, Davydov A, Lukovtsev V (2017) Chebyshev’s noise spectroscopy for testing electrochemical systems. Bulg Chem Commun 49:102–105Google Scholar
  28. 28.
    Grafov BM, Klyuev AL, Davydov AD (2018) Discrete version of Wiener-Khinchin theorem for Chebyshev’s spectrum of electrochemical noise. J Solid State Electrochem 22(6):1661–1667CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. L. Klyuev
    • 1
  • B. M. Grafov
    • 1
    Email author
  • A. D. Davydov
    • 1
  • V. P. Lukovtsev
    • 1
  • E. M. Petrenko
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations