Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 433–439 | Cite as

Modification of Li[Li0.13Ni0.2Mn0.47Co0.2]O2 cathode material by layered CeO2–C coating

  • K. A. Kurilenko
  • O. A. ShlyakhtinEmail author
  • D. I. PetukhovEmail author
  • A. V. Garshev
  • R. G. Valeev
Original Paper
  • 105 Downloads

Abstract

Li[Li0.13Ni0.2Mn0.47Co0.2]O2 (LLNMC) cathode materials coated with CeO2 and pyrolytic carbon have been obtained by the consecutive thermal decomposition of Ce(NO3)3 and polystyrene at the surface of LLNMC powder. EDX analysis combined with transmission electron microscopy revealed the uniform coating of LLNMC grains with nanosized ceria particles. The XPS spectra of LLNMC coated with CeO2 and carbon indicated a considerable amount of –С=С– bonds in the carbonized polystyrene pyrolysis products. The layered CeO2–C coating promotes a decrease in the electrode polarization and the charge transfer resistance of LLNMC during cycling, thus promoting a better rate capability of the cathode material. A combined effect of the CeO2 and carbon coatings results in the increase of the electrochemical capacity of LLNMC to 220 mAh g−1 at C/10.

Keywords

Li-ion batteries Cathode materials Coatings Ceria Pyrolytic carbon 

Notes

Funding information

The work is partially supported by the individual grant 16-33-60195 (D.I. Petukhov) of the Russian Foundation for Basic Research. The authors are thankful to the M.V. Lomonosov Moscow State University Program of Development for the partial support of instrumental studies.

Supplementary material

10008_2018_4150_Fig9_ESM.png (18 kb)
Supplementary Figure S1

(PNG 18 kb)

10008_2018_4150_MOESM1_ESM.tif (985 kb)
High resolution image (TIF 984 kb)
10008_2018_4150_Fig10_ESM.png (18 kb)
Supplementary Figure S1

(PNG 17 kb)

10008_2018_4150_MOESM2_ESM.tif (965 kb)
High resolution image (TIF 965 kb)
10008_2018_4150_Fig11_ESM.png (18 kb)
Supplementary Figure S1

(PNG 17 kb)

10008_2018_4150_MOESM3_ESM.tif (965 kb)
High resolution image (TIF 965 kb)

References

  1. 1.
    Manthiram A, Knight JC, Myung ST et al (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6:art. no. 1501010CrossRefGoogle Scholar
  2. 2.
    Hong J, Gwon H, Jung S-K, Ku K, Kang K (2015) Review—lithium-excess layered cathodes for lithium rechargeable batteries. J Electrochem Soc 162(14):A2447–A2467CrossRefGoogle Scholar
  3. 3.
    Dou S (2013) Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries. J Solid State Electrochem 17(4):911–926CrossRefGoogle Scholar
  4. 4.
    Oh Y, Ahn D, Nam S, Park B (2010) The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films. J Solid State Electrochem 14(7):1235–1240CrossRefGoogle Scholar
  5. 5.
    Shen D, Zhang D, Wen J, Chen D, He X, Yao Y, Li X, Duger C (2015) LiNi1/3Co1/3Mn1/3O2 coated by Al2O3 from urea homogeneous precipitation method: improved Li storage performance and mechanism exploring. J Solid State Electrochem 19(5):1523–1533CrossRefGoogle Scholar
  6. 6.
    Chen Y, Zhang Y, Wang F, Wang Z, Zhang Q (2014) Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating. J Alloys Compd 611:135–141CrossRefGoogle Scholar
  7. 7.
    Kong JZ, Ren C, Tai GA, Zhang X, Li AD, Wu D, Li H, Zhou F (2014) Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J Power Sources 266:433–439CrossRefGoogle Scholar
  8. 8.
    Chen Y, Zhang Y, Chen B, Wang Z, Lu C (2014) An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 256:20–27CrossRefGoogle Scholar
  9. 9.
    Miyashiro H, Yamanaka A, Tabuchi M, Seki S, Nakayama M, Ohno Y, Kobayashi Y, Mita Y, Usami A, Wakihara M (2006) Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2. J Electrochem Soc 153(2):A348CrossRefGoogle Scholar
  10. 10.
    Mohan P, Kalaignan GP (2013) Electrochemical behaviour of surface modified SiO2-coated LiNiO2 cathode materials for rechargeable lithium-ion batteries. J Nanosci Nanotechnol 13(4):2765–2770CrossRefGoogle Scholar
  11. 11.
    Myung S-T, Izumi K, Komaba S, Yashiro H, Bang HJ, Sun YK, Kumagai N (2007) Functionality of oxide coating for Li[Li0.05 Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries. J Phys Chem C 111(10):4061–4067CrossRefGoogle Scholar
  12. 12.
    Yang K, Fan LZ, Guo J, Qu X (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim Acta 63:363–368CrossRefGoogle Scholar
  13. 13.
    Cho J, Kim T-J, Kim J, Noh M, Park B (2004) Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell. J Electrochem Soc 151(11):A1899CrossRefGoogle Scholar
  14. 14.
    Ryu KS, Lee SH, Koo BK, Lee JW, Kim KM, Park YJ (2008) Effects of Co3(PO4)2 coatings on LiNi 0.8Co0.16Al0.04O2 cathodes during application of high current. J Appl Electrochem 38(10):1385–1390CrossRefGoogle Scholar
  15. 15.
    Liu W, Hu G, Du K et al (2013) Surface coating of LiNi0.8Co0.15Al0.05O2 with LiCoO2 by a molten salt method. Surf Coat Technol 216:267–272CrossRefGoogle Scholar
  16. 16.
    Liu D, Trottier J, Charest P, Fréchette J, Guerfi A, Mauger A, Julien CM, Zaghib K (2012) Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5 V cathode for lithium ion batteries. J Power Sources 204:127–132CrossRefGoogle Scholar
  17. 17.
    Zhu YR, Yi TF, Zhu RS, Zhou AN (2013) Increased cycling stability of Li4Ti5O12-coated LiMn1.5Ni0.5O4 as cathode material for lithium-ion batteries. Ceram Int 39(3):3087–3094CrossRefGoogle Scholar
  18. 18.
    Hashem AMA, Abdel-Ghany AE, Eid AE, Trottier J, Zaghib K, Mauger A, Julien CM (2011) Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery. J Power Sources 196(20):8632–8637CrossRefGoogle Scholar
  19. 19.
    Cao Q, Zhang HP, Wang GJ, Xia Q, Wu YP, Wu HQ (2007) A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem Commun 9(5):1228–1232CrossRefGoogle Scholar
  20. 20.
    Kurilenko KA, Shlyakhtin OA, Brylev OA, Petukhov DI, Garshev AV (2016) Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2 - based cathode materials. Beilstein J Nanotechnol 7:1960–1970CrossRefGoogle Scholar
  21. 21.
    Zuo D, Tian G, Li X, Chen D, Shu K (2017) Recent progress in surface coating of cathode materials for lithium ion secondary batteries. J Alloys Compd 706:24–40CrossRefGoogle Scholar
  22. 22.
    Jiang K-C, Xin S, Lee J-S, Kim J, Xiao XL, Guo YG (2012) Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys Chem Chem Phys 14(8):2934–2939CrossRefGoogle Scholar
  23. 23.
    Wu C, Fang X, Guo X, Mao Y, Ma J, Zhao C, Wang Z, Chen L (2013) Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J Power Sources 231:44–49CrossRefGoogle Scholar
  24. 24.
    Kurilenko KA, Shlyakhtin OA, Brylev OA, Drozhzhin OA (2015) The effect of synthesis conditions on the morphology, cation disorder and electrochemical performance of Li1+xNi0.5Mn0.5O2. Electrochim Acta 152:255–264CrossRefGoogle Scholar
  25. 25.
    Choi SH, Shlyakhtin OA, Kim J, Yoon YS (2005) Structural and electrochemical properties of Li1 + xNi0.5Mn0.5O2 + д (0 ≤ x ≤ 0.7) cathode materials for lithium-ion batteries. J Power Sources 140(2):355–360CrossRefGoogle Scholar
  26. 26.
    Wang M, Chen Y, Wu F, Su Y, Chen L, Dongliang Wang D (2010) Characterization of yttrium substituted LiNi0.33Mn0.33Co0.33O2 cathode material for lithium secondary cells. Electrochim Acta 55(28):8815–8820CrossRefGoogle Scholar
  27. 27.
    Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y (2017) Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. J Alloys Compd 690:589–597CrossRefGoogle Scholar
  28. 28.
    Kurilenko KA, Shlyakhtin OA, Brylev OA, Drozhzhin OA (2014) On the chemical interaction of Li1+x(Ni,Mn)O2 with carbon and carbon precursors. Ceram Int 40(10):16521–16527CrossRefGoogle Scholar
  29. 29.
    Croy JR, Gallagher KG, Balasubramanian M, Chen Z, Ren Y, Kim D, Kang SH, Dees DW, Thackeray MM (2013) Examining hysteresis in composite xLi2MnO3·(1−x)LiMO2 cathode structures. J Phys Chem C 117(13):6525–6536CrossRefGoogle Scholar
  30. 30.
    Croy JR, Gallagher KG, Balasubramanian M, Long BR, Thackeray MM (2014) Quantifying hysteresis and voltage fade in xLi2MnO3 (1-x)LiMn0.5Ni0.5O2Electrodes as a function of Li2MnO3 content. J Electrochem Soc 161(3):A318–A325CrossRefGoogle Scholar
  31. 31.
    Erickson EM, Schipper F, Penki TR, Shin JY, Erk C, Chesneau FF, Markovsky B, Aurbach D (2017) Review—recent advances and remaining challenges for lithium ion battery cathodes. II. Lithium-Rich, xLi2MnO3·(1-x)LiNiaCobMncO2. J Electrochem Soc 164:A6341–A6348CrossRefGoogle Scholar
  32. 32.
    Kurilenko KA, Shlyakhtin OA, Petukhov DI, Garshev AV (2018) Catalytic effect of nanostructured CeO2coating on the electrochemical performance of Li(Li, Ni, Mn, Co)O2. Solid State Ionics 324:59–64CrossRefGoogle Scholar
  33. 33.
    Peralta D, Colin JF, Boulineau A, Simonin L, Fabre F, Bouvet J, Feydi P, Chakir M, Chapuis M, Patoux S (2015) Role of the composition of lithium-rich layered oxide materials on the voltage decay. J Power Sources 280:687–694CrossRefGoogle Scholar
  34. 34.
    Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S (2016) Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater 6(21):1600906CrossRefGoogle Scholar
  35. 35.
    Shi SJ, Mai YJ, Tang YY, Gu CD, Wang XL, Tu JP (2012) Preparation and electrochemical performance of ball-like LiMn0.4Ni0.4Co0.2O2 cathode materials. Electrochim Acta 77:39–46CrossRefGoogle Scholar
  36. 36.
    Lin J, Mu D, Jin Y, Wu B, Ma Y, Wu F (2013) Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 230:76–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Materials SciencesM.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Udmurt Federal Research Center of the Ural Branch of Russian Academy of Sciences (UdmFRC of UB RAS)IzhevskRussia

Personalised recommendations