Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 345–350 | Cite as

Anodic dissolution of chromium at high current densities in sodium nitrate electrolyte

  • M. SchneiderEmail author
  • L. Simunkova
  • M. Manko
  • M. M. Lohrengel
  • W. Hoogsteen
Original Paper
  • 57 Downloads

Abstract

The dissolution mechanism of pure chromium at high current density characteristic for electrochemical machining processes is studied. The combination of electrochemical, microscopic, and spectroscopic techniques leads to a comprehensive interpretation of the dissolution mechanism. The polishing quality increases with increasing nitrate concentration and current density, respectively. The oxygen evolution amounts up to 45% of the consumed anodic charge and the apparent valence of the chromium dissolution decreases with increasing applied potential down to z = 3.5. The authors explain this phenomenon by a passive dissolution of chromium via Cr3+ followed by a chemical oxidation of Cr3+ to dichromate under nitrate reduction to nitrogen.

Keywords

Anodic dissolution Electrochemical machining (ECM) Chromium Oxygen efficiency 

Notes

Funding information

The Philips Consumer Lifestyle (Drachten NL) financially supported this study.

References

  1. 1.
    Schneider M, Lohrengel MM (2017) Electrochemical machining. In: Breitkopf C, Swider-Lyons K (eds) Springer-Handbook of electrochemical energy. Springer, Dordrecht, pp 941–971CrossRefGoogle Scholar
  2. 2.
    Pirani M, Schröter K (1924) Elektrochemische Formgebung von harten metallischen Gegenstaenden Z. Metalkunde 16:132–133 in GermanGoogle Scholar
  3. 3.
    Rummyantsev E, Davidov A (1989) Electrochemical machining of metals. In: MIR MoscowGoogle Scholar
  4. 4.
    Davydov AD, Volgin VM (2007) Electrochemical machining. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 5. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  5. 5.
    McGeough JA (1974) Principles of electrochemical machining. Chapman Hall, LondonGoogle Scholar
  6. 6.
    Altena HSJ (2000) Precision ECM by process characteristic modelling. PhD thesis, Caledonian University GlasgowGoogle Scholar
  7. 7.
    Arzhintar OA, Dikusar AI, Petrenko WI, Petrov JI (1974) Anodic dissolution of chromium in neutral solutions at high current densities. Elektronnaja obrabotka materialov 60:9–14Google Scholar
  8. 8.
    Sauschkin WP (1974) Anodic dissolution of chromium in neutral solutions at high current densities. Elektronnaja obrabotka materialov 60:5–9Google Scholar
  9. 9.
    Rosenkranz C (2005) Elektrochemische Prozesse an Eisenoberflächen bei extremen anodischen Stromdichten. Dissertation thesis, Heinrich-Heine-University Düsseldorf, in GermanGoogle Scholar
  10. 10.
    Lohrengel MM, Rataj KP, Münninghoff TR (2012) Struktur und Prozesse – die Metalloberfläche beim Electrochemical Machining. Galvanotechnik 110:260–264 in GermanGoogle Scholar
  11. 11.
    Manko M (2013) Über die Beteiligung von Oxidschichten bei der anodischen Auflösung von Chrom und Mangan. diploma thesis, Heinrich-Heine –University Düsseldorf, in GermanGoogle Scholar
  12. 12.
    Bockris JOM, Khan SUM (1993) Surface electrochemistry—a molecular level approach. Plenum Press, New YorkCrossRefGoogle Scholar
  13. 13.
    Kaesche H (2003) Corrosion of metals. Springer Verlag, Berlin Heidelberg, pp 228–236CrossRefGoogle Scholar
  14. 14.
    Strehblow H-H (2016) Passivity of metals studied by surface analytical methods, a review. Electrochim Acta 212:630–648CrossRefGoogle Scholar
  15. 15.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford, p 262Google Scholar
  16. 16.
    Silkin SA, Petrenko VI, Dikusar AI (2010) Anodic dissolution of electrochemical chromium coatings in electrolytes for electrochemical machining: the dissolution rate and surface roughness. Surf Eng Appl Electrochem 46(1):1–8CrossRefGoogle Scholar
  17. 17.
    Lohrengel MM (2004) Electrochemical capillary cells. Corros Eng Sci Technol 39(1):53–58CrossRefGoogle Scholar
  18. 18.
    Lohrengel MM, Rosenkranz C, Klüppel I, Moehring A, Bettermann H, Van den Bossche B, Deconinck J (2004) A new microcell or microreactor for material surface investigations at large current densities. Electrochim Acta 49(17–18):2863–2870CrossRefGoogle Scholar
  19. 19.
    Rataj K, Hammer C, Walther B, Lohrengel MM (2013) Quantified oxygen evolution at microelectrodes. Electrochim Acta 90:12–16CrossRefGoogle Scholar
  20. 20.
    Hammer C, Walther B, Karabulut H, Lohrengel MM (2011) Oscillating oxygen evolution at Ta anodes. J Solid State Electrochem 15(9):1885–1891CrossRefGoogle Scholar
  21. 21.
    Fournier-Salaün MC, Salaün P (2007) Quantitative determination of hexavalent chromium in aqueous solutions by UV-Vis spectrophotometer. Cent Eur J Chem 5:1084–1093Google Scholar
  22. 22.
    Katsounaros I, Ipsakis D, Polatides C, Kyriacou G (2006) Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials. Electrochim Acta 52(3):1329–1338CrossRefGoogle Scholar
  23. 23.
    Reyter D, Chamoulaud G, Belanger D, Roue L (2006) Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling. J Electroanal Chem 596(1):13–24CrossRefGoogle Scholar
  24. 24.
    Kerkeni S, Lama-Pitara E, Barbier J (2002) Copper–platinum catalysts prepared and characterized by electrochemical methods for the reduction of nitrate and nitrite. Catal Today 75(1–4):35–42CrossRefGoogle Scholar
  25. 25.
    Schneider M, Schroth S, Richter S, Höhn S, Schubert N, Michaelis A (2011) In-situ investigation of the interplay between microstructure and anodic copper dissolution under near-ECM conditions— part 2: the transpassive state. Electrochim Acta 70:76–83CrossRefGoogle Scholar
  26. 26.
    Rosenkranz C, Lohrengel MM, Schultze JW (2005) The surface structure during pulsed ECM of iron in NO3. Electrochim Acta 50(10):2009–2016CrossRefGoogle Scholar
  27. 27.
    Walther B (2008) Produktanalyse beim Electrochemical Machining (ECM) von Hartmetallen. Dissertation thesis, Heinrich-Heine-Universität Düsseldorf, in GermanGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer IKTS DresdenDresdenGermany
  2. 2.Heinrich-Heine-Universität DüsseldorfDüsseldorfFederal Republic of Germany
  3. 3.Philips Consumer LifestyleDrachtenNetherlands

Personalised recommendations