Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 335–343 | Cite as

Ag@Fe2O3-graphene oxide nanocomposite as a novel redox probe for electrochemical immunosensor for alpha-fetoprotein detection

  • Xiaomei HuangEmail author
  • Xiang Deng
  • Hua Zhu
  • Wenjing QiEmail author
  • Di Wu
Original Paper
  • 70 Downloads

Abstract

In this paper, a high sensitivity label-free electrochemical immunosensor for alpha-fetoprotein (AFP) detection using Ag@Fe2O3-graphene oxide (GO) nanocomposite (Ag@Fe2O3-GO) as a new type of redox nano-probe is reported. The Ag@Fe2O3-GO nanocomposite with tunable loading density up to full monolayer coverage is synthesized by adopting a simple phase transfer method and applied as a redox probe to fabricate an immunosensor for AFP. The obtained Ag@Fe2O3-GO nanocomposite has favorable electrical conductivity with the advantage of biocompatibility and chemical stability, which improves both the sensitivity and stability of the immunosensor. Furthermore, due to their excellent conductivity and large surface area, gold–platinum alloy nanoparticles (Au–Pt NPs) are served to immobilize an antibody (anti-AFP) and the electrochemical signal is further amplified accompanied by the enhanced sensitivity and the stability of the immunosensor. The novel Ag@Fe2O3-GO nanocomposite probe for AFP detection developed in this work exhibits excellent sensitivity with a linear response in the concentration range from 0.005 to 100 ng mL−1 and a detection limit of 0.2 pg mL−1 (S/N = 3).

Graphical abstract

The first time a strategy is put forward for sensitive label-free electrochemical immunosensor by using Ag@Fe2O3-GO nanocomposite as a novel redox probe and to achieve fast, sensitive, and selective alpha-fetoprotein (AFP) detection with a limit of detection of down to 0.2 pg/mL.

Keywords

Electrochemical immunosensor Alpha-fetoprotein (AFP) Redox probe Ag@Fe2O3-graphene oxide (GO) nanocomposite (Ag@Fe2O3-GO) 

Notes

Funding information

This project was supported by the National Natural Science Foundation of China (No. 21505011), the Scientific Research Fund of the Sichuan Provincial Science and Technology Department (No. 2015JY0033), the Scientific Research Fund of the Sichuan Provincial Education Department (No. 16ZA0356), the Scientific Research Fund of the Sichuan Provincial Education Department (No. 18ZA0414), Supported by the Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education (No. LYJ1802), and Water treatment Research Project of Sichuan University of Arts and Science (No. 2018SCL002Y).

References

  1. 1.
    Yang SH, Zhang FF, Wang ZH, Liang QL (2018) Biosens Bioelectron 112:186–192CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Bai Y, Feng F, Shuang S (2016) Anal Methods 8(32):6131–6134CrossRefGoogle Scholar
  3. 3.
    Yang L, Li YY, Zhang Y, Fan DW, Pang XH, Wei Q, Du B (2017) Appl Mater Interfaces 9(40):35260–35267CrossRefGoogle Scholar
  4. 4.
    Ren X, Yan JR, Wu D, Wei Q, Wan YK (2017) ACS Sens 2(9):1267–1271CrossRefGoogle Scholar
  5. 5.
    Demerdash HM, Hussien HM, Hassouna E, Arida EA (2017) J Med Virol 2:18060–18069Google Scholar
  6. 6.
    Abdelgawad IA (2015) J Clin Pathol 68(2):154–160CrossRefGoogle Scholar
  7. 7.
    Song P, Tang Q, Feng X, Tang W (2016) Scand J Clin Lab Invest 76(245):70–76Google Scholar
  8. 8.
    Lee YM, Jeong YJ, Kang HJ, Chung SJ, Chung BH (2009) Biosens Bioelectron 25(2):332–335CrossRefGoogle Scholar
  9. 9.
    Wang HY, Sun DY, Tan ZA, Gong W, Wang L (2011) Colloids Surf B 84(2):515–519CrossRefGoogle Scholar
  10. 10.
    Zhu J, Li JJ, Wang AQ, Chen Y, Zhao JW (2010) Nanoscale Res Lett 5(9):1496–1501CrossRefGoogle Scholar
  11. 11.
    Zhuo Y, Yuan PX, Yuan R, Chai YQ, Hong CL (2008) Biomaterials 29(10):1501–1506CrossRefGoogle Scholar
  12. 12.
    Cheng W, Yan F, Ding L, Ju HX, Yin YB (2010) Anal Chem 82(8):3337–3342CrossRefGoogle Scholar
  13. 13.
    Ah CS, Kim SJ, Jang DJ (2006) J Phys Chem B 110(11):5486–5489CrossRefGoogle Scholar
  14. 14.
    Sun YY, Liu YQ, Zhao GZ, Zhou X, Zhang Q (2008) Mater Chem Phys 111(2-3):301–304CrossRefGoogle Scholar
  15. 15.
    Ma JJ, Wang K, Zhan MS (2015) Appl Mater Interfaces 7(29):16027–16039CrossRefGoogle Scholar
  16. 16.
    Lin FH, Doong RA (2017) J Phys Chem C 121(14):7844–7853CrossRefGoogle Scholar
  17. 17.
    Wang WB, Wang WW, Liu LQ, Xu LG, Kuang H, Zhu JP, Xu CL (2016) Appl Mater Interfaces 8(24):15591–15597CrossRefGoogle Scholar
  18. 18.
    Zhou YL, Yin HS, Meng XM, Xu ZN, Fu YR, Ai SY (2012) Electrochim Acta 71(3):294–301Google Scholar
  19. 19.
    Yang HM, Zhang Y, Li L, Zhang LN, Lan FF, Yu JH (2017) Anal Chem 89:7511–7519CrossRefGoogle Scholar
  20. 20.
    Lai GS, Wang LL, Wu J, Ju HX, Yan F (2012) Anal Chim Acta 721:1–6CrossRefGoogle Scholar
  21. 21.
    Lin DJ, Wu J, Wang M, Yan F, Ju HX (2012) Anal Chem 84(8):3662–3668CrossRefGoogle Scholar
  22. 22.
    Zhou Y, Wang HJ, Zhuo Y, Chai YQ, Yuan R (2017) Anal Chem 89(6):3732–3738CrossRefGoogle Scholar
  23. 23.
    Wang LL, Lou ZLL, Deng JN, Zhang R, Zhang T (2015) Appl Mater Interfaces 7(23):13098–13104CrossRefGoogle Scholar
  24. 24.
    Zhang R, Fang YY, Chen T, Qu FL, Liu Z, Du G, Asiri AM, Gao T, Sun XP (2017) Sustainable Chem Eng 5(9):7502–7506Google Scholar
  25. 25.
    Zhang Y, Li Q, Liu JW, You WB, Fang F, Wang M, Che RC (2018) Langmuir 34(18):5225–5233CrossRefGoogle Scholar
  26. 26.
    Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK (2005) Angew Chem 44(7):1068–1071CrossRefGoogle Scholar
  27. 27.
    Cao DF, He PL, Hu NF (2003) Analyst 128(10):1268–1274CrossRefGoogle Scholar
  28. 28.
    Sun LL, Wu W, Yang SL, Zhou J, Hong MQ, Xiao XH, Ren F, Jiang CZ (2014) Appl Mater Interfaces 6(2):1113–1124CrossRefGoogle Scholar
  29. 29.
    Prucek R, Tuček J, Kilianová M, Panáček A, Kvitek LJ, Filip J, Kolář M, Tománková K, Zbořil R (2011) Biomaterials 32(21):4704–4713CrossRefGoogle Scholar
  30. 30.
    Wei Z, Zhou Z, Yang M, Lin C, Zhao Z, Huang D, Chen Z, Gao JJ (2011) J Mater Chem 21(41):16344–16348CrossRefGoogle Scholar
  31. 31.
    Liu J, Zhao Z, Feng H, Cui FJ (2012) J Mater Chem 22(28):13891–13894CrossRefGoogle Scholar
  32. 32.
    Ezequiel R, Encina EA, Coronado H (2016) J Phys Chem C 120(10):5630–5639Google Scholar
  33. 33.
    Guo H, Jin H, Gui R, Wang Z, Xia J, Zhang F (2017) Sensors Actuators B Chem 253:50–57CrossRefGoogle Scholar
  34. 34.
    Pusty M, Rana AK, Kumar Y, Sathe V, Sen S, Shirage P (2016) Chemistryselect 1(14):4235–4245CrossRefGoogle Scholar
  35. 35.
    Wang Z, Yu J, Gui R, Jin H, Xia Y (2016) Biosens Bioelectron 79:136–149CrossRefGoogle Scholar
  36. 36.
    Guo S, Zhang S, Wu L, Sun S (2013) Angew Chem Int Ed 52(33):8526–8544CrossRefGoogle Scholar
  37. 37.
    Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Nat Mater 10(10):780–786CrossRefGoogle Scholar
  38. 38.
    Arpita J, Eike S, Sebastian P, Beilstein J (2017) Nanotechnol 8(1):688–714Google Scholar
  39. 39.
    Varela HR, Martín IG, Terrones M (2012) ACS Nano 6(6):4565–4572CrossRefGoogle Scholar
  40. 40.
    Tian J, Liu S, Zhang Y, Li H, Wang L, Luo Y, Asiri AM, Youbi AOA, Sun X (2012) Inorg Chem 51(8):4742–4746CrossRefGoogle Scholar
  41. 41.
    Wu YM, Xu WJ, Wang Y, Yuan YL, Yuan R (2013) Electrochim Acta 88:135–140CrossRefGoogle Scholar
  42. 42.
    Ren X, Ma HM, Zhang T, Zhang Y, Tao Y, Du B, Wei Q (2017) Appl Mater Interfaces 9(43):37637–37644CrossRefGoogle Scholar
  43. 43.
    Han QZ, Wang RY, Xing B, Chi HT, Wu D, Wei Q (2018) Biosens Bioelectron 106:7–13CrossRefGoogle Scholar
  44. 44.
    Xing B, Zhu WJ, Zheng XP, Zhu YY, Wei Q, Wu D (2018) Sensors Actuators B Chem 256:403–411CrossRefGoogle Scholar
  45. 45.
    Zhao XH, Ma QJ,Wu XX, Zhu X (2012) Anal Chim Acta 727(10):67–70Google Scholar
  46. 46.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY (2007) Carbon 45(7):1558–1565CrossRefGoogle Scholar
  47. 47.
    Ge SG, Yan M, Lu JJ, Zhang M, Yu F, Yu JH (2012) Biosens Bioelectron 31(1):49–54CrossRefGoogle Scholar
  48. 48.
    Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R (2009) J Am Chem Soc 131(23):8262–8268CrossRefGoogle Scholar
  49. 49.
    Cao YL, Yuan R, Chai YQ, Liu HJ, Liao YH, Zhuo Y (2013) Talanta 113(17):106–112Google Scholar
  50. 50.
    Zhao WW, Wang J, Zhu YC, Xu JJ, Chen HY (2015) Anal Chem 87(19):9520–9531CrossRefGoogle Scholar
  51. 51.
    Swanick KN, Hesari M, Workentin MS, Ding ZJ (2012) Am Chem Soc 134(37):15205–15208CrossRefGoogle Scholar
  52. 52.
    Li L, Liu H, Shen Y, Zhang J, Zhu JJ (2011) Anal Chem 83(3):661–665CrossRefGoogle Scholar
  53. 53.
    Li Y, Yuan R, Chai Y, Song ZJ (2011) Electrochim Acta 56(19):6715–6721CrossRefGoogle Scholar
  54. 54.
    Vijayaraghavan G, Stevenson KJ (2007) Langmuir 23(10):5279–5283CrossRefGoogle Scholar
  55. 55.
    Huang Y, Wen Q, Jiang JH, Shen GL, Yu RQ (2008) Biosens Bioelectron 24(4):600–604CrossRefGoogle Scholar
  56. 56.
    Chen YJ, Gao N, Jiang J (2013) Small 9(19):3242–3246Google Scholar
  57. 57.
    Gao N, Chen YJ, Jiang J (2013) Appl Mater Interfaces 5(21):11307–11314CrossRefGoogle Scholar
  58. 58.
    Zhang K, Zhang LL, Zhao XS, Wu J (2010) Chem Mater 22(4):1392–1401CrossRefGoogle Scholar
  59. 59.
    Zhu YY, Cheng S, Zhou WJ, Jia J, Yang LF, Yao MH, Wang MK, Zhou J, Wu P, Liu ML (2017) ACS Sustain Chem Eng 5(6):5067–5074CrossRefGoogle Scholar
  60. 60.
    Li YJ, Ma M, Zhu JJ (2012) Anal Chem 84(23):10492–10499CrossRefGoogle Scholar
  61. 61.
    Luo ZB, Zhang LJ, Zeng RJ, Su LS, Tang DP (2018) Anal Chem 90(15):9568–9575CrossRefGoogle Scholar
  62. 62.
    Liu X, Jiang H, Fang Y, Zhao W, Wang NY, Zang GZ (2015) Anal Chem 87(18):9163–9169CrossRefGoogle Scholar
  63. 63.
    Su HL, Yuan R, Chai YQ, Mao L, Zhuo Y (2011) Biosens Bioelectron 26(11):4601–4604CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringSichuan University of Arts and ScienceDazhouPeople’s Republic of China
  2. 2.Key Laboratory of Green Chemistry of Sichuan Institutes of Higher EducationZigongPeople’s Republic of China
  3. 3.Chongqing Key Laboratory of inorganic Functional Materials, College of ChemistryChongqing Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations