Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 269–276 | Cite as

Zirconia fiber membranes based on PVDF as high-safety separators for lithium-ion batteries using a papermaking method

  • Zenghao Wang
  • Yongshuai Xie
  • Chonghe Xu
  • Shuying Shi
  • Lin Wang
  • Guanghui ZhangEmail author
  • Xinqiang Wang
  • Luyi Zhu
  • Dong Xu
Original Paper


Lithium-ion batteries have been receiving more and more attention because of the energy crisis. As an important subassembly of lithium-ion batteries, the separator greatly affects the safety of the batteries. Herein, we report for the first time, a novel method fabricated separator by mixing zirconia fibers with polyvinylidene fluoride (PVDF) via papermaking process. The separators possess abundant pores and uniform structure after the phase inversion process. The separator properties were systematically studied at different proportion of PVDF. We find that when the content of PVDF is 40%, the separator has high porosity (77.69%), high electrolyte uptake (523.3%), and excellent thermal stability (thermal shrinkage ratio is 0% at 500 °C). In addition, the rate capability, cycle performance, and ionic conductivity are also investigated. We anticipate that the papermaking method of zirconia fibers will provide a strategy to fabricate a promising separator for enhanced electrochemical performance and high safety of lithium-ion batteries.


Zirconia fiber Papermaking method Polyvinylidene fluoride Thermal stability Lithium-ion batteries 


Funding information

This work was supported by the National Natural Science Foundations of China (grant no. 51372140).

Supplementary material

10008_2018_4132_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1314 kb)


  1. 1.
    Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7(12):3857–3886CrossRefGoogle Scholar
  2. 2.
    Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295CrossRefGoogle Scholar
  3. 3.
    Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024CrossRefGoogle Scholar
  4. 4.
    Shi J, Xia Y, Yuan Z, Hu H, Li X, Jiang H, Zhang H, Liu Z (2015) Composite membrane with ultra-thin ion exchangeable functional layer: a new separator choice for manganese-based cathode material in lithium ion batteries. J Mater Chem A 3(13):7006–7013CrossRefGoogle Scholar
  5. 5.
    Zhen L, Yong X, Sun SP, Lei Z, Li SS, Liu XG, Xu ZH, Xu SM (2018) Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator. J Membr Sci 565:50–60CrossRefGoogle Scholar
  6. 6.
    Chen CA, Li CC (2018) Microencapsulating inorganic and organic flame retardants for the safety improvement of lithium-ion batteries. Solid State Ionics 323:56–63CrossRefGoogle Scholar
  7. 7.
    Dan L, Meng C, Jing X, Yin XZ, Jing W, Chen SH, Wang LX, Hua W (2018) Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery. Compos Sci Technol 157:119–125CrossRefGoogle Scholar
  8. 8.
    Pi JK, Wu GP, Yang HC, Arges CG, Xu ZK (2017) Separators with biomineralized zirconia coatings for enhanced thermo- and electro-performance of lithium-ion batteries. ACS Appl Mater Interfaces 9(26):21971–21978CrossRefGoogle Scholar
  9. 9.
    Li D, Shi DQ, Feng K, Li XF, Zhan HM (2017) Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J Membr Sci 530:125–131CrossRefGoogle Scholar
  10. 10.
    Wang H, Pan L, Wu C, Gao D, Chen S, Li L (2015) Pyrogallic acid coated polypropylene membranes as separators for lithium-ion batteries. J Mater Chem A 3(41):20535–20540CrossRefGoogle Scholar
  11. 11.
    Shi C, Dai J, Huang S, Li C, Shen X, Zhang P, Wu D, Sun D, Zhao J (2016) A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J Membr Sci 518:168–177CrossRefGoogle Scholar
  12. 12.
    Fu K, Gong YH, Dai JQ, Gong A, Han XG, Yao YG, Wang CW, Wang YB, Chen YN, Yan CY, Li YJ, Wachsman ED, Hu LB (2016) Solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci U S A 113(26):7094–7099CrossRefGoogle Scholar
  13. 13.
    Hu SY, Lin SD, Tu YY, Hu JW, Wu Y, Liu GJ, Li F, Yu FM, Jiang TT (2016) Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries. J Mater Chem A 4(9):3513–3526CrossRefGoogle Scholar
  14. 14.
    Shi C, Zhang P, Huang S, He X, Yang P, Wu D, Sun D, Zhao J (2015) Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J Power Sources 298:158–165CrossRefGoogle Scholar
  15. 15.
    Jiang F, Nie Y, Yin L, Feng Y, Yu Q, Zhong C (2016) Core–shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510(1–9):1–9CrossRefGoogle Scholar
  16. 16.
    Cao C, Tan L, Liu W, Ma J, Li L (2014) Polydopamine coated electrospun poly (−vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J Power Sources 248:224–229CrossRefGoogle Scholar
  17. 17.
    Wang ZH, Xiang HF, Wang LJ, Xia R, Nie SP, Chen CH, Wang HH (2018) A membrane-supported inorganic composite separator for high-safety lithium-ion batteries. J Membr Sci 553:10–16CrossRefGoogle Scholar
  18. 18.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 35:4419–4462CrossRefGoogle Scholar
  19. 19.
    Liu LP, Wang Z, Zhao ZK, Zhao YJ, Li F, Yang LB (2016) PVDF/PAN/SiO2 polymer electrolyte membrane prepared by combination of phase inversion and chemical reaction method for lithium ion batteries. J Solid State Electrochem 20(3):699–712CrossRefGoogle Scholar
  20. 20.
    Kong LY, Yan YR, Qiu ZM, Zhou ZQ, Hu JQ (2018) Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries. J Membr Sci 549:321–331CrossRefGoogle Scholar
  21. 21.
    Jian L, Liu YB, Yang WX, Qian R, Li FY, Zheng H (2018) Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. J Power Sources 396:265–275CrossRefGoogle Scholar
  22. 22.
    Lee J, Lee CL, Park K, Kim ID (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217CrossRefGoogle Scholar
  23. 23.
    Zhu X, Jiang X, Ai X, Yang H, Cao Y (2016) TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J Membr Sci 504:97–103CrossRefGoogle Scholar
  24. 24.
    Suriyakumar S, Raja M, Angulakshmi N, Nahm KS, Stephan AM (2016) A flexible zirconium oxide based-ceramic membrane as a separator for lithium-ion batteries. RSC Adv 6(94):92020–92027CrossRefGoogle Scholar
  25. 25.
    Wang MN, Xin C, Hong W, Wu HB, Jin XY, Chen H (2017) Improved performances of lithium-ion batteries with a separator based on inorganic fibers. J Mater Chem A 5(1):311–318CrossRefGoogle Scholar
  26. 26.
    Zhao XX, Zhang ZL, Yang SS, Liang GC (2017) Inorganic ceramic fiber separator for electrochemical and safety performance improvement of lithium-ion batteries. Ceram Int 43(17):14775–14783CrossRefGoogle Scholar
  27. 27.
    Yuan KK, Jin XT, Yu ZC, Gan XZ, Wang XQ, Zhang GH, Zhu LY, Xu D (2018) Electrospun mesoporous zirconia ceramic fibers for catalyst supporting applications. Ceram Int 44(1):282–289CrossRefGoogle Scholar
  28. 28.
    Cui JQ, Liu JQ, He CF, Jie L, Wu XF (2017) Composite of polyvinylidene fluoride–cellulose acetate with Al(OH)3 as a separator for high-performance lithium ion battery. J Membr Sci 541:661–667CrossRefGoogle Scholar
  29. 29.
    Liang HQ, Wan LS, Xu ZK (2016) Poly(vinylidene fluoride) separators with dual asymmetric structure for high-performance lithium ion batteries. Chin J Polym Sci 34(12):1423–1435CrossRefGoogle Scholar
  30. 30.
    He JY, Liu JQ, Li J, Lai YQ, Wu XF (2016) Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HFP/HDPE membrane. Mater Lett 170:126–129CrossRefGoogle Scholar
  31. 31.
    Xie Y, Zou H, Xiang H, Xia R, Liang D, Shi P, Dai S, Wang H (2016) Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J Membr Sci 503:25–30CrossRefGoogle Scholar
  32. 32.
    Zhai Y, Xiao K, Yu J, Yang J, Ding B (2015) Thermostable and nonflammable silica–-polyetherimide–polyurethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3(19):10551–10558CrossRefGoogle Scholar
  33. 33.
    Zhang S, Cao J, Shang Y, Wang L, He X, Li J, Zhao P, Wang Y (2015) Nanocomposite polymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications. J Mater Chem A 3(34):17697–17703CrossRefGoogle Scholar
  34. 34.
    Shi J, Hu H, Xia Y, Liu Y, Liu Z (2014) Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. J Mater Chem A 2(24):9134–9141CrossRefGoogle Scholar
  35. 35.
    Zhang HN, Fang L, Bai LJ, Nan M, Xu CZ (2018) Developing lithiated polyvinyl formal based single-ion conductor membrane with a significantly improved ionic conductivity as solid-state electrolyte for batteries. J Membr Sci 552:349–356CrossRefGoogle Scholar
  36. 36.
    Kuo PL, Wu CA, Lu CY, Tsao CH, Hsu CH, Hou SS (2014) High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte. ACS Appl Mater Interfaces 6(5):3156–3162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zenghao Wang
    • 1
  • Yongshuai Xie
    • 1
  • Chonghe Xu
    • 1
  • Shuying Shi
    • 1
  • Lin Wang
    • 1
  • Guanghui Zhang
    • 1
    Email author
  • Xinqiang Wang
    • 1
  • Luyi Zhu
    • 1
  • Dong Xu
    • 1
  1. 1.State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations