Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 285–294 | Cite as

Cobalt oxide nanoparticles anchored polyaniline-appended cobalt tetracarboxy phthalocyanine, modified glassy carbon electrode for facile electrocatalysis of amitrole

  • Peter T. Mafuwe
  • Mambo Moyo
  • Tawanda Mugadza
  • Munyaradzi ShumbaEmail author
  • Steven Nyoni
Original Paper


Cobalt oxide nanoparticles were anchored on polyaniline-appended cobalt phthalocyanine and used to modify glassy carbon electrodes for enhanced electrocatalytic oxidation of amitrole. The modified electrodes were characterised by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. Cyclic voltammetry, linear sweep voltammetry, chronoamperometry and differential pulse voltammetry were used to evaluate the electrocatalytic behaviour of the designed sensors. Catalytic rate constant of 6.26 × 105 M−1 s−1 and apparent electron transfer rate constant of 8.84 × 10−3 cm s−1 were observed on CoTCPc-PANI-Co3O4NP-GCE. The adsorption equilibrium constant and Gibbs energy were 4.8 × 101 M−1 and − 12.1 kJ mol−1, respectively, confirming substrate adsorption during a spontaneous reaction on the surface of the modified electrode. The limit of detection and limit of quantification were 6.61 × 10−8 M and 2 × 10−7 M, respectively, for the electrocatalytic detection of amitrole and only suffered 4% signal loss after repetitive ten runs in 1 mM amitrole.

Graphical abstract


Amitrole Electrooxidation Electrochemical sensor Polyaniline-appended cobalt phthalocyanine Cobalt oxide nanoparticles 



We are grateful to the Department of Chemical Technology of Midlands State University, the technical staff and the Electron Microscopy Unit of Rhodes University for all their assistance during the varied analysis of our probes.


  1. 1.
    Maringa A, Mugadza T, Antunes E, Nyokong T (2008) Characterization and electrocatalytic behaviour of glassy carbon electrode modified with nickel nanoparticles towards amitrole detection. J Electroanal Chem 700:86–92CrossRefGoogle Scholar
  2. 2.
    Maringa A, Nyokong T (2014) The influence of gold nanoparticles on the electroactivity of nickel tetrasulfonated phthalocyanine. J Porphyrins Phthalocyanines 18(08n09):642–651CrossRefGoogle Scholar
  3. 3.
    Shumba M, Nyokong T (2016) Characterization and electrocatalytic activity of nanocomposites consisting of nanosized cobalt tetraaminophenoxy phthalocyanine, multi-walled carbon nanotubes and gold nanoparticles. Electroanalysis 28(7):1478–1488CrossRefGoogle Scholar
  4. 4.
    Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396(1):241–259CrossRefGoogle Scholar
  5. 5.
    Della C, Rossi M, Maria A, Ponti A, Lo M, Falletta E (2012) One-pot synthesis of polyaniline/Fe3O4 nanocomposites with magnetic and conductive behaviour. Catalytic effect of Fe3O4 nanoparticles. Synth Met 162(24):2250–2258CrossRefGoogle Scholar
  6. 6.
    Mohammad AM, Awad MI, El-deab MS, Okajima T, Ohsaka T (2008) Electrocatalysis by nanoparticles: optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modified electrodes. Electrochim Acta 53(13):4351–4358CrossRefGoogle Scholar
  7. 7.
    Chen SQ, Wang Y (2010) Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J Mater Chem 20(43):9735–9739CrossRefGoogle Scholar
  8. 8.
    Kong L, Ren Z, Zheng N, Du S, Wu J, Tang J (2015) Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res 8(2):469–480CrossRefGoogle Scholar
  9. 9.
    Sharifi SL, Shakur HR, Mirzaei A, Salmani A, Hosseini MH (2013) Characterization of cobalt oxide Co3O4 nanoparticles prepared by various methods: effect of calcination temperatures on size, dimension and catalytic decomposition of hydrogen peroxide. Int J Nanosci Nanotechnol 9:51–58Google Scholar
  10. 10.
    Zheng Y, Li P, Li H, Chen S (2014) Controllable growth of cobalt oxide nanoparticles on reduced graphene oxide and its application for highly sensitive glucose sensor. Int J Electrochem Sci 9:7369–7381Google Scholar
  11. 11.
    Houshmand M, Jabbari A, Heli H, Hajjizadeh M, Moosavi-Movahedi AA (2008) Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode. J Solid State Electrochem 12(9):1117–1128CrossRefGoogle Scholar
  12. 12.
    Caro CA, Bedioui F, Zagal JH (2002) Electrocatalytic oxidation of nitrite on a vitreous carbon electrode modified with cobalt phthalocyanine. Electrochim Acta 47(9):1489–1494CrossRefGoogle Scholar
  13. 13.
    Devasenathipathy R, Mani V, Chen SM, Kohilarani K, Ramaraj S (2015) Determination of L-cysteine at iron tetrasulfonated phthalocyanine decorated multiwalled carbon nanotubes film modified electrode. Int J Electrochem Sci 10:682–690Google Scholar
  14. 14.
    Foster CW, Pillay J, Metters JP, Banks CE (2014) Cobalt phthalocyanine modified electrodes utilised in electroanalysis: Nano-structured modified electrodes vs. bulk modified screen-printed electrodes. Sensors (Switzerland) 14(11):21905–21922CrossRefGoogle Scholar
  15. 15.
    Shumba M, Centane S, Chindeka F, Nyokong T (2017) Nanocomposites of sulphur-nitrogen co-doped graphene oxide nanosheets and cobalt mono carboxyphenoxy phthalocyanines for facile electrocatalysis. J Electroanal Chem 791:36–48CrossRefGoogle Scholar
  16. 16.
    Hosu IS, Wang Q, Vasilescu A, Peteu SF, Raditoiu V, Railian S, Zaitsev V, Turcheniuk K, Wang Q, Li M, Boukherroub R, Szunerits S (2015) Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide. RSC Adv 5(2):1474–1484CrossRefGoogle Scholar
  17. 17.
    Moyo P, Mugadza T, Mehlana G, Guyo U (2016) Synthesis and characterization of activated carbon–ethylenediamine–cobalt(II) tetracarboxyphthalocyanine conjugate for catalytic oxidation of ascorbic acid. Res Chem Intermed 42(8):6511–6529CrossRefGoogle Scholar
  18. 18.
    Maringa A, Antunes E, Nyokong T (2014) Electrochemical behaviour of gold nanoparticles and Co tetraaminophthalocyanine on glassy carbon electrode. Electrochim Acta 121:93–101CrossRefGoogle Scholar
  19. 19.
    Nyoni S, Mashazi P, Nyokong T (2016) Electrode modification using nanocompositesof electropolymerised cobalt phthalocyanines supported on multiwalled carbon nanotubes. J Solid State Electrochem 20(4):1075–1086CrossRefGoogle Scholar
  20. 20.
    Pavez J, Páez M, Ringuedé A, Bedioui F, Zagal JH (2005) Effect of film thickness on the electro-reduction of molecular oxygen on electropolymerized cobalt tetra-aminophthalocyanine films. J Solid State Electrochem 9(1):21–29CrossRefGoogle Scholar
  21. 21.
    Borsos K, Inzelt G (2016) A new electrode for acid base titration based on poly (copper phthalocyanine). J Solid State Electrochem 20(4):1215–1222CrossRefGoogle Scholar
  22. 22.
    Coutanceau C (1995) Conducting polymer electrodes modified by metal tetrasulphonated phthalocyanines: preparation and electrocatalytic behaviour towards dioxygen reduction in acid medium. Electrochim Acta 40(17):2739–2748CrossRefGoogle Scholar
  23. 23.
    Laamanen I, Sorsa M, Bamford D, Gripenberg U, Meretoja T (1976) Mutagenicity and toxicity of amitrole. Drosophila tests. Mutat Res 40(3):185–190CrossRefGoogle Scholar
  24. 24.
    Siswana M, Ozoemena KI, Nyokong T (2006) Electrocatalytic behaviour of carbon paste electrode modified with iron(II) phthalocyanine (FePc) nanoparticles towards the detection of amitrole. Talanta 69(5):1136–1142CrossRefGoogle Scholar
  25. 25.
    Sakamoto K, Ohno-okumura E (2009) Syntheses and functional properties of phthalocyanines. Electrochem Soc Interface 2:1127–1179Google Scholar
  26. 26.
    Athar T, Hakeem A, Topnani N, Hashmi A (2012) Wet synthesis of monodisperse cobalt oxide nanoparticles. ISRN Mater Sci 2012:1–5CrossRefGoogle Scholar
  27. 27.
    Hou Y, Li J, Wen Z, Cui S, Yuan C (2015) Co3O4 nanoparticles embedded in nitrogen doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 12:1–8CrossRefGoogle Scholar
  28. 28.
    Abdolahi A, Hamzah E, Ibrahim Z, Hashim S (2012) Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials 211:1487–1494CrossRefGoogle Scholar
  29. 29.
    Mugadza T, Nyokong T (2010) Covalent linking of ethylene amine functionalized single-walled carbon nanotubes to cobalt (II) tetracarboxyl-phthalocyanines for use in electrocatalysis. Synth Met 160(19-20):2089–2098CrossRefGoogle Scholar
  30. 30.
    Mugadza T, Arslano Y, Nyokong T (2012) Single walled carbon nanotube conjugate platforms and their use in electrocatalysis of amitrole. Electroch Acta 68:44–51CrossRefGoogle Scholar
  31. 31.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  32. 32.
    Gooding JJ, Praig VG, Hall E (1998) Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers. Anal Chem 70(11):2396–2402CrossRefGoogle Scholar
  33. 33.
    Mugadza T, Nyokong T (2010) Electrocatalytic oxidation of amitrole and diuron on iron(II) tetraaminophthalocyanine-single walled carbon. Electrochim Acta 55(8):2606–2613CrossRefGoogle Scholar
  34. 34.
    Salimi A, Hallaj R (2012) Cobalt oxide nanostructure-modified glassy carbon electrode as a highly sensitive flow injection amperometric sensor for the picomolar detection of insulin. J Solid State Electrochem 16(3):1239–1246CrossRefGoogle Scholar
  35. 35.
    Salimi A, Abdi K (2004) Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique: application to amperometric detection of hydrazine and hydroxyl amine. Talanta 63(2):475–483CrossRefGoogle Scholar
  36. 36.
    Shumba M, Nyokong T (2016) Development of nanocomposites of phosphorus-nitrogen co-doped graphene oxide nanosheets and nanosized cobalt phthalocyanines for electrocatalysis. Electrochim Acta 213:529–539CrossRefGoogle Scholar
  37. 37.
    Zen JM, Kumar AS, Chang MR (2000) Electrocatalytic oxidation and trace detection of amitrole using a Nafion/lead-ruthenium oxide pyrochlore chemically modified electrode. Electrochim Acta 45(10):1691–1699CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sensors Laboratory, Department of Chemical TechnologyMidlands State UniversityGweruZimbabwe
  2. 2.Department of ChemistryChinhoyi University of TechnologyChinhoyiZimbabwe

Personalised recommendations