Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 245–250 | Cite as

Investigations on the reversible heat generation rates of blended Li-insertion electrodes

  • T. Liebmann
  • C. Heubner
  • M. Schneider
  • A. Michaelis
Original Paper
  • 35 Downloads

Abstract

Recently, considerable improvements regarding the electrochemical performance of cathodes for lithium-ion batteries have been achieved by combining multiple lithium insertion compounds with complementary advantageous properties in one electrode. Herein, reversible heat generation rates of blended insertion electrodes are systematically investigated by temperature-dependent measurements of the equilibrium potential. The results are compared to theoretical predictions showing excellent agreement. Both the reversible heat profile and the corresponding dissipated heat significantly depend on the type and mass ratio of the constituents of the blend. The results indicate that reversible heat profiles of blended electrodes can be tailored to a certain extent by the targeted compilation of the active material mixture.

Keywords

Lithium Battery Blended electrode Heat generation Entropy 

References

  1. 1.
    Chikkannanavar SB, Bernardi DM, Liu L (2014) A review of blended cathode materials for use in Li-ion batteries. J Power Sources 248:91–100CrossRefGoogle Scholar
  2. 2.
    Heubner C, Liebmann T, Schneider M, Michaelis A (2018) Recent insights into the electrochemical behavior of blended lithium insertion cathodes: a review. Electrochim Acta 269:745–760CrossRefGoogle Scholar
  3. 3.
    Albertus P, Christensen J, Newman J (2009) Experiments on and modeling of positive electrodes with multiple active materials for lithium-ion batteries. J Electrochem Soc 156(7):A606–A618CrossRefGoogle Scholar
  4. 4.
    Gallagher KG, Kang S-H, Park SU, Han SY (2011) xLi2MnO3·(1−x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability. J Power Sources 196(22):9702–9707CrossRefGoogle Scholar
  5. 5.
    Appiah WA, Park J, van Khue L, Lee Y, Choi J, Ryou MH, Lee YM (2016) Comparative study on experiments and simulation of blended cathode active materials for lithium ion batteries. Electrochim Acta 187:422–432CrossRefGoogle Scholar
  6. 6.
    Whitacre JF, Zaghib K, West WC, Ratnakumar BV (2008) Dual active material composite cathode structures for Li-ion batteries. J Power Sources 177(2):528–536CrossRefGoogle Scholar
  7. 7.
    Lee K-S, Myung S-T, Kim D-W, Sun YK (2011) AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. J Power Sources 196(16):6974–6977CrossRefGoogle Scholar
  8. 8.
    Tran HY, Täubert C, Fleischhammer M et al (2011) LiMn2O4 spinel/LiNi0.8Co0.15Al0.05O2 blends as cathode materials for lithium-ion batteries. J Electrochem Soc 158(5):A556–A561Google Scholar
  9. 9.
    Jeong SK, Shin JS, Nahm KS, Prem Kumar T, Stephan AM (2008) Electrochemical studies on cathode blends of LiMn2O4 and Li[Li1/15Ni1/5Co2/5Mn1/3O2]. Mater Chem Phys 111(2-3):213–217CrossRefGoogle Scholar
  10. 10.
    Gao J, Manthiram A (2009) Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources 191(2):644–647CrossRefGoogle Scholar
  11. 11.
    Lee ES, Manthiram A (2011) High capacity Li [Li0. 2Mn0. 54Ni0. 13Co0.13] O2–VO2 (B) composite cathodes with controlled irreversible capacity loss for lithium-ion batteries. J Electrochem Soc 158(1):A47–A50Google Scholar
  12. 12.
    Smith AJ, Smith SR, Byrne T, Burns JC, Dahn JR (2012) Synergies in blended LiMn2O4 and Li[Ni1/3Mn1/3Co1/3]O2 positive electrodes. J Electrochem Soc 159(10):A1696–A1701CrossRefGoogle Scholar
  13. 13.
    Klein A, Axmann P, Wohlfahrt-Mehrens M (2016) Synergetic effects of LiFe0.3Mn0.7PO4–LiMn1.9Al0.1O4 blend electrodes. J Power Sources 309:169–177CrossRefGoogle Scholar
  14. 14.
    Heubner C, Lämmel C, Schneider M, Michaelis A (2017) Temperature induced compositional redistribution in blended insertion electrodes. J Power Sources 344:170–175CrossRefGoogle Scholar
  15. 15.
    Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158(3):R1CrossRefGoogle Scholar
  16. 16.
    Maleki H, Deng G, Anani A et al (1999) Thermal stability studies of Li-ion cells and components. J Electrochem Soc 146(9):3224–3229CrossRefGoogle Scholar
  17. 17.
    Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113(1):81–100CrossRefGoogle Scholar
  18. 18.
    Wang Q, Ping P, Zhao X et al (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRefGoogle Scholar
  19. 19.
    Bandhauer TM, Garimella S, Fuller TF (2014) Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery. J Power Sources 247:618–628CrossRefGoogle Scholar
  20. 20.
    Heubner C, Schneider M, Michaelis A (2016) Detailed study of heat generation in porous LiCoO2 electrodes. J Power Sources 307:199–207CrossRefGoogle Scholar
  21. 21.
    Thomas KE, Newman J (2003) Heats of mixing and of entropy in porous insertion electrodes. J Power Sources 119–121:844–849CrossRefGoogle Scholar
  22. 22.
    Bernardi D, Pawlikowski E, Newman J (1985) A general energy balance for battery systems. J Electrochem Soc 132(1):5–12CrossRefGoogle Scholar
  23. 23.
    Gu WB, Wang CY (2000) Thermal-electrochemical modeling of battery systems. J Electrochem Soc 147(8):2910CrossRefGoogle Scholar
  24. 24.
    Thomas KE, Bogatu C, Newman J (2001) Measurement of the entropy of reaction as a function of state of charge in doped and undoped lithium manganese oxide. J Electrochem Soc 148(6):A570–A575CrossRefGoogle Scholar
  25. 25.
    Lu W, Belharouak I, Park SH, Sun YK, Amine K (2007) Isothermal calorimetry investigation of Li1+xMn2−yAlzO4 spinel. Electrochim Acta 52(19):5837–5842CrossRefGoogle Scholar
  26. 26.
    Eddahech A, Briat O, Vinassa J-M (2013) Thermal characterization of a high-power lithium-ion battery: potentiometric and calorimetric measurement of entropy changes. Energy 61:432–439CrossRefGoogle Scholar
  27. 27.
    Williford RE, Viswanathan VV, Zhang J-G (2009) Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries. J Power Sources 189(1):101–107CrossRefGoogle Scholar
  28. 28.
    Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang JG, Liu J, Yang Z (2010) Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources 195(11):3720–3729CrossRefGoogle Scholar
  29. 29.
    Hong J, Maleki H, Al Hallaj S et al (1998) Electrochemical-calorimetric studies of lithium-ion cells. J Electrochem Soc 145(5):1489–1501CrossRefGoogle Scholar
  30. 30.
    Al Hallaj S, Prakash J, Selman JR (2000) Characterization of commercial Li-ion batteries using electrochemical–calorimetric measurements. J Power Sources 87(1-2):186–194CrossRefGoogle Scholar
  31. 31.
    Huang J, Li Z, Liaw BY, Wang Z, Song S, Wu N, Zhang J (2015) Entropy coefficient of a blended electrode in a lithium-ion cell. J Electrochem Soc 162(12):A2367–A2371CrossRefGoogle Scholar
  32. 32.
    Ohzuku T, Kitagawa M, Hirai T (1990) Electrochemistry of manganese dioxide in lithium nonaqueous cell III. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J Electrochem Soc 137(3):769–775CrossRefGoogle Scholar
  33. 33.
    Heubner C, Schneider M, Michaelis A (2017) Reversible heat generation rates of blended insertion electrodes. J Solid State Electrochem 21(7):2109–2115CrossRefGoogle Scholar
  34. 34.
    Heubner C, Liebmann T, Lämmel C, Schneider M, Michaelis A (2018) Deconvolution of cyclic voltammograms for blended lithium insertion compounds by using a model-like blend electrode. ChemElectroChem 5(3):425–428CrossRefGoogle Scholar
  35. 35.
    Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139(8):2091–2097CrossRefGoogle Scholar
  36. 36.
    Reynier Y, Graetz J, Swan-Wood T, Rez P, Yazami R, Fultz B (2004) Entropy of Li intercalation in LixCoO2. Phys Rev B 70(17):174304CrossRefGoogle Scholar
  37. 37.
    Kobayashi Y, Mita Y, Seki S, Ohno Y, Miyashiro H, Nakayama M, Wakihara M (2008) Configurational entropy of lithium manganese oxide and related materials, LiCryMn2−yO4 (y= 0, 0.3). J Electrochem Soc 155(1):A14–A19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and SystemsDresdenGermany
  2. 2.Institute of Materials ScienceTU DresdenDresdenGermany

Personalised recommendations