Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 307–314 | Cite as

Determination of the thermodynamic properties of the Li2CaThF8 in Li-Ca-Th-F system by the solid-state electrochemical cell method

  • Sumanta MukherjeeEmail author
  • Smruti Dash
Original Paper
  • 15 Downloads

Abstract

In the present paper, we have reported the standard molar Gibbs energy of formation for Li2CaThF8(s) measured by solid electrolyte galvanic cell technique with CaF2 as solid electrolyte. The heat capacity, Cp, of the compound has been measured using the differential scanning calorimetric technique. Based on the experimentally obtained thermodynamic parameters, thermodynamic functions for Li2CaThF8(s) have been generated.

Keywords

Li2CaThF8(s) E.m.f. method Gibbs energy Heat capacity Phase diagram Thermodynamic function 

Notes

Acknowledgements

The authors are thankful to Dr. S. Kannan, Head, Fuel Chemistry Division, for his constant support and encouragement. The authors are also thankful to Shri Buddhadev Kanrar and Shri. Muhammed Shafeeq for performing the X-ray diffraction analysis.

References

  1. 1.
    Kasten PR (1967) Safety program for molten-salt breeder reactors, ORNL-TM-1858. Oak Ridge National Laboratory, Oak RidgeCrossRefGoogle Scholar
  2. 2.
    McCoy E, Weir JR (1967) Materials development for molten salt breeder reactors, ORNL-TM1854. Oak Ridge National Laboratory, Oak RidgeCrossRefGoogle Scholar
  3. 3.
    Macpherson HG (1969) Molten-salt reactors, Proceedings of the International Conference on the Constructive Uses of Atomic Energy. American Nuclear Society, Washington, DCGoogle Scholar
  4. 4.
    Delpech S, Merle-Lucotte E, Heuer D, Allibert M, Ghetta V, Le-Brun C, Doligez X, Picard G (2009) Reactor physic and reprocessing scheme for innovative molten salt reactor system. J Fluor Chem 130:11–18Google Scholar
  5. 5.
    Nuttin DH, Billebaud A, Brissot R, Le Brun C, Liatard E, Loiseaux JM, Mathieu L, Meplan O, Merle-Lucotte E, Nifenecker H, Perdu F, David S (2005) Potential of thorium Molten Salt Reactors : detailed calculations and concept evolution with a view to large scale energy production. Prog Nucl Energy 46:77–84Google Scholar
  6. 6.
    Perry AM, Bauman HF (1970) Reactor Physics and Fuel-Cycle Analyses. Nucl Appl and Techn 8:208–215Google Scholar
  7. 7.
    Mathieu L, Heuer D, Brissot R, Garzenne C, Le Brun C, Lecarpentier D, Liatard E, Loiseaux JM, Mèplan O, Merle-Lucotte E, Nuttin A, Walle E, Wilson J (2006) The thorium molten salt reactor: Moving on from the MSBR. Prog Nucl Energy 48:664–671Google Scholar
  8. 8.
    Vedrine A, Baraduc L, Cousseins JL (1973) Sur une nouvelle famillede composes MIIMIVLi2F8 de structure apparentee a celle de la scheelite. Mater Res Bull 8(5):581–588CrossRefGoogle Scholar
  9. 9.
    Capelli E, Beneš O, Raison PE, Beilmann M, Künzel C, Konings RJM (2015) Thermodynamic Investigation of the CaF2-ThF4 and the LiF-CaF2-ThF4 Systems. J Chem Eng Data 60(11):3166–3174CrossRefGoogle Scholar
  10. 10.
    Saha A, Deb SB, Saxena MK (2016) Determination of trace impurities in advanced metallic nuclear fuels by inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS). J Anal At Spectrom 31(7):1480–1489CrossRefGoogle Scholar
  11. 11.
    Prasad R, Dash S, Parida SC, Singh Z, Venugopal V (2003) Thermodynamic studies on SrThO3(s). J Nucl Mater 312(1):1–8CrossRefGoogle Scholar
  12. 12.
    Li2CaThF8 crystal structure https://materials.springer.com/isp/crystallographic/docs/sd_1636328 sd_1636328 (Springer-Verlag GmbH, Heidelberg, © 2016)
  13. 13.
    Kopp H (1865) Investigations of the specific heat of solid bodies. Phil Trans R Soc Lond 155:71CrossRefGoogle Scholar
  14. 14.
    Leitner J, Vonˇkab P, Sedmidubsky’ D, Svobodae P (2010) Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim Acta 497:7–13CrossRefGoogle Scholar
  15. 15.
    Beneš O, Konings RJM, Kuenzel C, Sierig M, Dockendorf A, Vlahovic L (2009) J Chem Thermodyn 41:8993Google Scholar
  16. 16.
    Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer - Verlag, New YorkGoogle Scholar
  17. 17.
    Sumanta M, Smruti D, Mukerjee SK, Ramakumar KL (2015) Thermodynamic investigations of oxyfluoride of thorium and uranium. J Nucl Mater 465:604–614CrossRefGoogle Scholar
  18. 18.
    Chase MW Jr, Davies CA, Downey JR Jr, Fruip DJ, McDonald V, Syverud AN (1995) NIST standard reference database. J Phys Chem 13.  https://doi.org/10.18434/T42S31
  19. 19.
    Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics, the Calphad method. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. 20.
    Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. Academic Press, New YorkGoogle Scholar
  21. 21.
    Pelton AD, Chartrand P, Eriksson G (2001) The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation. Metall. Mater Trans A 32A(6):1409–1416CrossRefGoogle Scholar
  22. 22.
    Zachariasen WH (1949) Crystal chemical studies of the 5f‐series of elements. XII. New compounds representing known structure types. Acta Crystallogr 2:388–390Google Scholar
  23. 23.
    Keller C, Salzer M (1967) Tern~re fluoride des typs MertMetVF~MIT LaFa-Struktur. J Inorg Nucl Chem 29:2925–2934Google Scholar
  24. 24.
    Harris LA, White GD (1959) X-Ray analyses of the solid phases in the system LiF-ThF. J Phys Chem 63:1974–1975Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fuel Chemistry Division, Bhabha Atomic Research CentreHomi Bhabha National Institute (HBNI)MumbaiIndia

Personalised recommendations