Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 215–226 | Cite as

An expanded clay-coated separator with unique microporous structure for enhancing electrochemical performance of rechargeable hybrid aqueous batteries

  • Liu Yao 
  • Li Dongni 
  • Xu Hang 
  • Jiang Yinshan 
  • Li Fangfei 
  • Xue Bing Email author
Original Paper
  • 55 Downloads

Abstract

In this study, a novel composite separator for rechargeable hybrid aqueous batteries is successfully fabricated by coating porous expanded dickite aqueous slurry using polyacrylic latex as the binder on ES (Ethylene-Propylene Side By Side) nonwoven. The porous expanded dickite is prepared by intercalation and violent chemical reaction, forming porous structure with pore size of 0.3–1.2 μm. The porous morphology of the composite separators could be fine-tuned by varying the content of expanded dickite. The air permeability, porosity, electrolyte uptake, and ionic conductivity of the composite separators gradually improve with the increase of the content of expanded dickite. The improved performance of composite separators helps to improve battery performance, especially at high expanded dickite content. The composite separators with 90 wt.% expanded dickite provide superior cell performance owing to well-tailored pore structure, as compared to a commercialized absorbed glass mat (AGM).

Keywords

Dickite Nonwoven composite separators Rechargeable hybrid aqueous battery Pore structure 

Notes

Funding information

This study was financially supported by the National Natural Science Foundation of China (NSFC, grant Nos. 41472035 and 41702036) and Project of Science and Technology Department (Jilin Province, grant No. 20170201002GX).

References

  1. 1.
    Li W, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous electrolytes. Science 264(5162):1115–1118CrossRefGoogle Scholar
  2. 2.
    Yan J, Wang J, Liu H, Bakenov Z, Gosselink D, Chen P (2012) Rechargeable hybrid aqueous batteries. J Power Sources 216:222–226CrossRefGoogle Scholar
  3. 3.
    Chang Z, Li CY, Wang YF, Chen BW, Fu LJ, Zhu YS, Zhang LX, Wu YP, Huang W (2016) A lithium ion battery using an aqueous electrolyte solution. Sci Rep 6(1):28421CrossRefGoogle Scholar
  4. 4.
    Zhu X, Wu XW, Doan TNL, Tian Y, Zhao HB, Chen P (2016) Binder-free flexible LiMn2O4/carbon nanotube network as high power cathode for rechargeable hybrid aqueous battery. J Power Sources 326:498–504CrossRefGoogle Scholar
  5. 5.
    Tao HS, Tong X, Gan L, Zhang SQ, Zhang XM, Liu X (2016) Effect of adding various carbon additives to porous zinc anode in rechargeable hybrid aqueous battery. J Alloy Compd 658:119–124CrossRefGoogle Scholar
  6. 6.
    Sun KEK, Hoang TKA, Doan TNL, Yu Y, Zhu X, Tian Y, Chen P (2017) Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl Mater Interfaces 9(11):9681–9687CrossRefGoogle Scholar
  7. 7.
    Wu XW, Li YH, Li CC, He ZX, Xiang YH, Xiong LZ, Chen D, Yu Y, Sun K, He ZQ, Chen P (2015) The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive. J Power Sources 300:453–459CrossRefGoogle Scholar
  8. 8.
    Lu CY, Hoang TKA, Doan TNL, Acton M, Zhao HB, Guan WS, Chen P (2016) Influence of different silica gelling agents on the performance of aqueous gel electrolytes. J Ind Eng Chem 42:101–106CrossRefGoogle Scholar
  9. 9.
    Hoang TKA, Doan TNL, Cho JH, Su JYJ, Lee C, Lu CY, Chen P (2017) Sustainable gel electrolyte containing pyrazole as corrosion inhibitor and dendrite suppressor for aqueous Zn/LiMn2O4 battery. ChemSusChem 10(13):2816–2822CrossRefGoogle Scholar
  10. 10.
    Hoang TKA, Doan TNL, Lu CY, Ghaznavi M, Zhao HB, Chen P (2017) Performance of thixotropic gel electrolytes in the rechargeable aqueous Zn/LiMn2O4 battery. ACS Sustain Chem Eng 5(2):1804–1811CrossRefGoogle Scholar
  11. 11.
    Jiang W, Liu ZH, Kong QS, Yao JH, Zhang CJ, Han PX, Cui GL (2013) A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 232:44–48CrossRefGoogle Scholar
  12. 12.
    Wang Y, Wang SQ, Fang JQ, Ding LX, Wang HH (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254CrossRefGoogle Scholar
  13. 13.
    Miao YE, Zhu GN, Hou HQ, Xia YY, Liu TX (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86CrossRefGoogle Scholar
  14. 14.
    Yanilmaz M, Lu Y, Li Y, Zhang XW (2015) SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. J Power Sources 273:1114–1119CrossRefGoogle Scholar
  15. 15.
    Wang H, Zhang Y, Gao HP, Jin XY, Xie XH (2016) Composite melt-blown nonwoven fabrics with large pore size as Li-ion battery separator. Int J Hydrog Energy 41(1):324–330CrossRefGoogle Scholar
  16. 16.
    Zhang YC, Wang ZH, Xiang HF, Shi PC, Wang HH (2016) A thin inorganic composite separator for lithium-ion batteries. J Membr Sci 509:19–26CrossRefGoogle Scholar
  17. 17.
    Zhang BX, Hou QX, Liu W, Liang ZH, Wang B, Zhang HL (2017) Wet-laid formation and strength enhancement of alkaline battery separators using polypropylene fibers and polyethylene/polypropylene bicomponent fibers as raw materials. Ind Eng Chem Res 56(27):7739–7746CrossRefGoogle Scholar
  18. 18.
    Carvalho DV, Loeffler N, Kim GT, Passerini S (2015) High temperature stable separator for lithium batteries based on SiO2 and hydroxypropyl guar gum. Membranes 5(4):632–645CrossRefGoogle Scholar
  19. 19.
    Cho J, Jung YC, Lee YS, Kim DW (2017) High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. J Membr Sci 535:151–157CrossRefGoogle Scholar
  20. 20.
    Xu RJ, Huang XR, Lin XG, Cao J, Yang JF, Lei CH (2017) The functional aqueous slurry coated separator using polyvinylidene fluoride powder particles for lithium-ion batteries. J Electroanal Chem 786:77–85CrossRefGoogle Scholar
  21. 21.
    Jeon H, Yeon D, Lee T, Park J, Ryou MH, Lee YM (2016) A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J Power Sources 315:161–168CrossRefGoogle Scholar
  22. 22.
    Liu QZ, Xia M, Chen JH, Tao YF, Wang YD, Liu K, Li MF, Wang WW, Wang D (2015) High performance hybrid Al2O3/poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator. Electrochim Acta 176:949–955CrossRefGoogle Scholar
  23. 23.
    Jeong HS, Choi ES, Lee SY (2012) Composition ratio-dependent structural evolution of SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separators for lithium-ion batteries. Electrochim Acta 86:317–322CrossRefGoogle Scholar
  24. 24.
    Wu YS, Yang CC, Luo SP, Chen YL, Wei CN, Lue SJ (2017) PVDF-HFP/PET/PVDF-HFP composite membrane for lithium-ion power batteries. Int J Hydrog Energy 42(10):6862–6875CrossRefGoogle Scholar
  25. 25.
    Park SR, Jung YC, Shin WK, Ahn KH, Lee CH, Kim DW (2017) Cross-linked fibrous composite separator for high performance lithium-ion batteries with enhanced safety. J Membr Sci 527:129–136CrossRefGoogle Scholar
  26. 26.
    Xue B, Zhang PP, Jiang YS, Sun MM, Liu DR, Yu LX (2011) Preparation and characterization of linear low-density polyethylene/dickite nanocomposites prepared by the direct melt blending of linear low-density polyethylene with exfoliated dickite. J Appl Polym Sci 120(3):1736–1743CrossRefGoogle Scholar
  27. 27.
    Xue B, Jiang YS, Li GD (2013) Preparation of Cu/Dickite/LLDPE nanocomposites and synergistic effect of exfoliated dickite and nano-Cu in LLDPE matrix. Polym Compos 34(7):1061–1070CrossRefGoogle Scholar
  28. 28.
    Xue B, Yang K, Wang XY, Chi QW, Jiang YS (2016) The role of potassium chlorate on expansion of dickite layers and the preparation of a novel TiO2 impregnated dickite photocatalyst using expanded dickite as carrier. RSC Adv 6(12):9803–9811CrossRefGoogle Scholar
  29. 29.
    Yanilmaz M, Chen C, Zhang XW (2013) Fabrication and characterization of SiO2/PVDF composite nanofiber-coated PP nonwoven separators for lithium-ion batteries. J Polym Sci B Polym Phys 51(23):1719–1726CrossRefGoogle Scholar
  30. 30.
    Choi ES, Lee SY (2011) Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. J Mater Chem 21(38):14747CrossRefGoogle Scholar
  31. 31.
    Zulfiqar S, Sarwar MI, Rasheed N, Yavuz CT (2015) Influence of interlayer functionalization of kaolinite on property profile of copolymer nanocomposites. Appl Clay Sci 112-113:25–31CrossRefGoogle Scholar
  32. 32.
    Valášková M, Rieder M, Matějka V, Čapková P, Slíva A (2007) Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite–urea intercalates. Appl Clay Sci 35(1-2):108–118CrossRefGoogle Scholar
  33. 33.
    Tan XL, Liu FY, Hu LM, Reed AH, Furukawa Y, Zhang GP (2017) Evaluation of the particle sizes of four clay minerals. Appl Clay Sci 135:313–324CrossRefGoogle Scholar
  34. 34.
    Farmer VC (2000) Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochim Acta A 56(5):927–930CrossRefGoogle Scholar
  35. 35.
    Xue B, Jiang YS, Li FF, Xia MS, Sun MM, Liu DR, Zhang XG, Yu LX (2010) Hydrophobic modification of dickite and salt spray test study on LLDPE/modified dickite composite. J Appl Polym Sci 116:3480–3488Google Scholar
  36. 36.
    Takemura D, Aihara S, Hamano K, Kise M, Nishimura T, Urushibata H, Yoshiyasu H (2005) A powder particle size effect on ceramic powder based separator for lithium rechargeable battery. J Power Sources 146(1-2):779–783CrossRefGoogle Scholar
  37. 37.
    Jeong HS, Kim JH, Lee SY (2010) A novel poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithium-ion battery. J Mater Chem 20(41):9180–9186CrossRefGoogle Scholar
  38. 38.
    Zainab G, Wang XF, Yu JY, Zhai YY, Babar AA, Xiao K, Ding B (2016) Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries. Mater Chem Phys 182:308–314CrossRefGoogle Scholar
  39. 39.
    Suharto Y, Lee Y, Yu JS, Choi W, Kim KJ (2018) Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries. J Power Sources 376:184–190CrossRefGoogle Scholar
  40. 40.
    Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177CrossRefGoogle Scholar
  41. 41.
    Bakenov Z, Taniguchi I (2005) Electrochemical performance of nanostructured LiMxMn2−xO4 (M=Co and Al) powders at high charge–discharge operations. Solid State Ionics 176(11-12):1027–1034CrossRefGoogle Scholar
  42. 42.
    Luo JY, Cui WJ, He P, Xia YY (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2(9):760–765CrossRefGoogle Scholar
  43. 43.
    Lu CY, Hoang TKA, Doan TNL, Zhao HB, Pan R, Yang L, Guan WS, Chen P (2016) Rechargeable hybrid aqueous batteries using silica nanoparticle doped aqueous electrolytes. Appl Energy 170:58–64CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liu Yao 
    • 1
  • Li Dongni 
    • 1
  • Xu Hang 
    • 1
  • Jiang Yinshan 
    • 1
  • Li Fangfei 
    • 1
  • Xue Bing 
    • 1
    Email author
  1. 1.Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations