Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 205–214 | Cite as

Influence of supporting electrolyte on the pseudocapacitive properties of MnO2/carbon nanotubes

  • S. Sopčić
  • N. Šešelj
  • M. Kraljić Roković
Original Paper
  • 35 Downloads

Abstract

The aim of this study was to prepare MnO2 from a MnCl2 solution by electrode polarisation at a constant potential. MnO2 was deposited at platinum and platinum modified by carbon nanotubes (CNTs) with a varying degree of oxidation. The mass of the electrodeposited MnO2 was calculated from the current transient. An electrochemical quartz crystal microbalance (EQCM) enabled the determination of the correction factor which considers the presence of the equivalent amount of water within the MnO2 layer. The obtained electrodes (MnO2, MnO2/CNT, MnO2/CNT-EO1 and MnO2/CNT-EO2) were tested in NaCl, LiCl and MnCl2 electrolytes by cyclic voltammetry, demonstrating the best pseudocapacitive properties in the MnCl2 solution. It was proven that the electrolyte cation size, its valence and the hydration shell significantly influence the MnO2 pseudocapacitive redox reaction. The pseudocapacitive properties of MnO2 were improved by MnO2 deposition onto CNTs and oxidised CNT electrodes. The oxidation of CNTs was accomplished by a simple electrochemical procedure in a Na2SO4 solution (CNT-EO1 and CNT-EO2 electrodes). Electrochemical impedance spectroscopy has shown that charge transfer resistance has increased by oxidation process. However, it did not influence the overall pseudocapacitive properties significantly.

Keywords

Supercapacitors MnO2 CNT Cyclic voltammetry Electrochemical quartz crystal microbalance 

Notes

Funding information

This work has been fully supported by Croatian Science Foundation under the project “High power-high energy electrochemical supercapacitor for hybrid electrical vehicles”, IP-2013-11-8825.

References

  1. 1.
    Wei J, Nagarajan N, Zhitomirsky I (2007) Manganese oxide films for electrochemical supercapacitors. J Mater Process Technol 186(1-3):356–361Google Scholar
  2. 2.
    Chodankar NR, Ji SH, Kim DH (2017) Low-cost superior symmetric solid-state supercapacitors based on MWCNTs/MnO2 nanocomposite thin film. J Taiwan Inst Chem Eng 80:503–510Google Scholar
  3. 3.
    Toupin M, Brousse T, Belanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14(9):3946–3952Google Scholar
  4. 4.
    Coustan L, Lannelongue P, Arcidiacono P, Favier F (2016) Faradaic contributions in the supercapacitive charge storage mechanisms of manganese dioxides. Electrochim Acta 206:479–489Google Scholar
  5. 5.
    Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F (2005) Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J Electrochem Soc 152(1):A229–A236Google Scholar
  6. 6.
    Nayak PK, Munichandraiah N (2009) Simultaneous electrodeposition of MnO2 and Mn(OH)2 for supercapacitor studies. Electrochem Solid-State Lett 12(6):A115–A119Google Scholar
  7. 7.
    Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):A220–A223Google Scholar
  8. 8.
    Hu CC, Tsou TW (2002) Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun 4(2):105–109Google Scholar
  9. 9.
    Chang JK, Tsai WT (2003) Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. J Electrochem Soc 150(10):A1333–A1338Google Scholar
  10. 10.
    Wu MS, Chiang PCJ (2004) Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors. Electrochem Solid-State Lett 7(6):A123–A126Google Scholar
  11. 11.
    Devaraj S, Munichandraiah N (2005) High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem Solid-State Lett 8(7):A373–A377Google Scholar
  12. 12.
    Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417Google Scholar
  13. 13.
    Jeong YU, Manthiram A (2002) Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J Electrochem Soc 149(11):A1419–A1422Google Scholar
  14. 14.
    Sopčić S, Peter R, Petravić M, Mandić Z (2013) New insights into the mechanism of pseudocapacitance deterioration in electrodeposited MnO2 under negative potentials. J Power Sources 240:252–257Google Scholar
  15. 15.
    Moses Jacob G, Zhitomirsky I (2008) Microstructure and properties of manganese dioxide films prepared by electrodeposition. Appl Surf Sci 254(20):6671–6676Google Scholar
  16. 16.
    Cross AD, Morel A, Drozd M, Olcomendy I, Hollenkamp AF, Donne SW (2013) Active mass analysis on thin films of electrodeposited manganese dioxide for electrochemical capacitors. Electrochim Acta 87:133–139Google Scholar
  17. 17.
    Devaraj S, Munichandraiah N (2009) EQCM investigation of the electrodeposition of MnO2 and its capacitance behavior. Electrochem Solid State Lett 12(9):F21–F25Google Scholar
  18. 18.
    Owen MP, Lawrance GA, Donne SW (2007) An electrochemical quartz crystal microbalance study into the deposition of manganese dioxide. Electrochim Acta 52(14):4630–4639Google Scholar
  19. 19.
    Nayak PK, Devaraj S, Munichandraiah N (2010) An EQCM investigation of electrochemical precipitation of Mn(OH)2 and its capacitance behavior. Electrochem Solid State Lett 13(11):F29–F32Google Scholar
  20. 20.
    Chu YH, Hu CC, Chang HK (2012) Electrochemical quartz crystal microbalance study of amorphous MnO2 prepared by anodic deposition. Electrochim Acta 61:124–131Google Scholar
  21. 21.
    Kuo SL, Wu NL (2006) Investigation of pseudocapacitive charge-storage reaction of MnO2 ∙ nH2O supercapacitors in aqueous electrolytes. J Electrochem Soc 153(7):A1317–A1324Google Scholar
  22. 22.
    Lin Y-P, Tsai C-B, HoW-H WN-L, Lin Y-P (2011) Comparative study on nanostructured MnO2/carbon composites synthesized by spontaneous reduction for supercapacitor application. Mater Chem Phys 130(1-2):367–372Google Scholar
  23. 23.
    Lee HY, Manivannan V, Goodenough JB (1999) Electrochemical capacitors with KCl electrolyte. C R Acad Sci, Ser IIc: Chim 2:565–577.  https://doi.org/10.1016/S1387-1609(00)88567-9 Google Scholar
  24. 24.
    Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16(16):3184–3190Google Scholar
  25. 25.
    Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GG (2007) Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim Acta 52(25):7377–7385Google Scholar
  26. 26.
    Hu C-C, Tsou T-W (2002) Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition. Electrochim Acta 47(21):3523–3532Google Scholar
  27. 27.
    Reddy RN, Reddy RG (2003) Sol-gel MnO2 as an electrode material for electrochemical capacitors. J Power Sources 124(1):330–337Google Scholar
  28. 28.
    Bai X, Tong X, Gao Y, ZhuW FC, Ma J, Tan T, Wang C, Luo Y, Sun H (2018) Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors. Electrochim Acta 281:525–533Google Scholar
  29. 29.
    Jadhav PR, Suryawanshi MP, Dalavi DS, Patil DS, Jo EA, Kolekar SS, Wali AA, Karanjkar MM, Kim JH, Patil PS (2015) Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor. Electrochim Acta 176:523–532Google Scholar
  30. 30.
    Li Y, Xu Z, Wang D, Zhao Y, Zhang H (2017) Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor. Electrochim Acta 251:344–351Google Scholar
  31. 31.
    Šešelj N, Sačer D, Kraljić Roković M (2016) Characterisation of Pseudocapacitive Properties of Chemically Prepared MnO2 and MnO2/Polypyrrole Composite. Kem Ind 65(3-4):127–136.  https://doi.org/10.15255/KUI.2015.009 Google Scholar
  32. 32.
    Li J, Cui L, Zhang X (2010) Preparation and electrochemistry of one-dimensional nanostructured MnO2/PPy composite for electrochemical capacitor. Appl Surf Sci 256(13):4339–4343Google Scholar
  33. 33.
    Dong ZH, Wei YL, Shi W, Zhang GA (2011) Characterisation of doped polypyrrole/manganese oxide nanocomposite for supercapacitor electrodes. Mater Chem Phys 131(1-2):529–534Google Scholar
  34. 34.
    Lu Q, Zhou Y (2011) Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties. J Power Sources 196(8):4088–4094Google Scholar
  35. 35.
    Yang XH, Wang YG, Xiong HM, Xia YY (2007) Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor. Electrochim Acta 53(2):752–757Google Scholar
  36. 36.
    Yuan C, Gao B, Su L, Zhang X (2008) Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors. J Colloid Interface Sci 322(2):545–550Google Scholar
  37. 37.
    Lv P, Feng YY, Li Y, Feng W (2012) Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. J Power Sources 220:160–168Google Scholar
  38. 38.
    Liu FJ (2008) Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid)–polyaniline for supercapacitor. J Power Sources 182(1):383–388Google Scholar
  39. 39.
    Kong S, Cheng K, Ouyang T, Gao Z, Ye K, Wang G, Cao D (2017) Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors. Electrochim Acta 246:433–442Google Scholar
  40. 40.
    Li SJ, Zhang JC, Li J, Yang HY, Meng JJ, Zhang B (2018) A 3D sandwich structured hybrid of gold nanoparticles decorated MnO2/graphene-carbon nanotubes as high performance H2O2 sensors. Sensors Actuators B Chem 260:1–11Google Scholar
  41. 41.
    Cui J, Yao S, Huang JQ, Qin L, Chong WG, Sadighi Z, Huang J, Wang Z, Kim JK (2017) Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. Energy Storage Mater 9:85–95.  https://doi.org/10.1016/j.ensm.2017.06.006 Google Scholar
  42. 42.
    Sharma AK, Sharma Y (2013) p-toluene sulfonic acid doped polyaniline carbon nanotube composites: synthesis via different routes and modified properties. J Electrochem Sci Eng 3:47–56.  https://doi.org/10.5599/jese.2013.0029 Google Scholar
  43. 43.
    Ćirić-Marjanović G (2013) Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth Met 170:31–56Google Scholar
  44. 44.
    Zhao D-D, Yang Z, Kong ES-W, Xu C-L, Zhang Y-F (2011) Carbon nanotube arrays supported manganese oxide and its application in electrochemical capacitors. J Solid State Electrochem 15(6):1235–1242Google Scholar
  45. 45.
    Sellers MCK, Castle BM, Marsh CP (2013) Three-dimensional manganese dioxide-functionalized carbon nanotube electrodes for electrochemical supercapacitors. J Solid State Electrochem 17(1):175–182Google Scholar
  46. 46.
    Fan Z, Chen J, Wang M, Cui K, Zhou H, Kuang Y (2006) Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials. Diam Relat Mater 15(9):1478–1483Google Scholar
  47. 47.
    Xie X, Gao L (2007) Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45(12):2365–2373Google Scholar
  48. 48.
    Ko JM, Kim KM (2009) Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor. Mater Chem Phys 114(2-3):837–841Google Scholar
  49. 49.
    Shao Y, Yin G, Zhang J, Gao Y (2006) Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution. Electrochim Acta 51(26):5853–5857Google Scholar
  50. 50.
    Ye J-S, Liu X, Cui HF, Zhang W-D, Sheu F-S, Lim TM (2005) Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochem Commun 7(3):249–255Google Scholar
  51. 51.
    Chen Y, Hu W, Gan H, Wang J-W, Shi X-C (2017) Enhancing high-rate capability of MnO2 film electrodeposited on carbon fibers via hydrothermal treatment. Electrochim Acta 246:890–896Google Scholar
  52. 52.
    Hao J, Zhong Y, Liao Y, Shu D, Kang Z, Zou X, He C, Guo S (2015) Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene. Electrochim Acta 167:412–420Google Scholar
  53. 53.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. NACE International, HoustonGoogle Scholar
  54. 54.
    Mosqueda HA, Crosnier O, Athouel L, Dandeville Y, Scdeller Y, Guillemet PH, Schleich DM, Brousse T (2010) Electrolytes for hybrid carbon–MnO2 electrochemical capacitors. Electrochim Acta 55(25):7479–7483Google Scholar
  55. 55.
    Sopčić S, Kraljić Roković M, Mandić Z, Róka A, Inzelt G (2011) Mass changes accompanying the pseudocapacitance of hydrous RuO2 under different experimental conditions. Electrochim Acta 56(10):3543–3548Google Scholar
  56. 56.
    Marcus Y (1991) Thermodynamics of solvation of ions Part 5.-Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87(18):2995–2999Google Scholar
  57. 57.
    Devaraj S, Gabriel GS, Gajjela SR, Balaya P (2012) Mesoporous MnO2 and Its Capacitive Behavior. Electrochem Solid State Lett 15(4):A57–A59Google Scholar
  58. 58.
    Dupont MF, Forghani M, Cameron AP, Donne SW (2018) Effect of electrolyte cation on the charge storage mechanism of manganese dioxide for electrochemical capacitors. Electrochim Acta 271:337–350Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations