Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 227–235 | Cite as

Electrochemical and photoelectrochemical properties of a hybrid film made of Ru(II) complex and Zn(II)-substituted tungstoborate

  • Huaiyao Ye
  • Rui Sun
  • Jianmin Qi
  • Lihua Gao
  • Kezhi Wang
Original Paper


A new hybrid film composed of Ru(II) polypyridyl complex cation of [(bpy)2Ru(L1)Ru(bpy)2]4+ {L1 = 1,6-bis-(2-(2-phenyl)benzimidazoyl)hexane, bpy = 2,2′-bipyridine, Ru1} and Zn(II)-substituted tungstoborate anion of [BW11Zn(H2O)O39]7− (BWZn) has been successfully prepared by electrostatic self-assembly technique and characterized by UV–visible absorption spectra, cycle voltammetry, electrochemical impedance spectra, as well as permeability of the films. Upon irradiation with white light, the hybrid films generated promptly stable and reproducible photocurrents which are related to applied potential, number of layer, and incident light intensity. The layer of BWZn anion as electron-transfer bridge layer can enhance photocurrent of the (BWZn/Ru1)n photoelectrochemical cell.


Thin film Ruthenium(II) complex Polyoxometalate Photoelectrochemical property 



We acknowledge the financial support of Beijing Natural Science Foundation (2182028), the National Natural Science Foundation of China (21371018), Scientific Research Ability Promotion Plan of Graduate Student of Beijing Technology and Business University (2018), the Open Research Fund Program of Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry (KLC-2018-YB2), and Analytical and Measurements Fund of Beijing Normal University.

Supplementary material

10008_2018_4121_MOESM1_ESM.docx (551 kb)
ESM 1 (DOCX 550 kb)


  1. 1.
    Ahmed I, Farha R, Goldmann M, Ruhlmann L (2013) Chem Commun 49(5):496–498Google Scholar
  2. 2.
    Anwar N, Sartorel A, Yaqub M, Wearen K, Laffir F, Armstrong G, Dickinson C, Bonchio M, McCormac T (2014) ACS Appl Mater Interfaces 6(11):8022–8031Google Scholar
  3. 3.
    Ardo S, Achey D, Morris AJ, Abrahamsson M, Meyer GJ (2011) J Am Chem Soc 133(41):16572–16580Google Scholar
  4. 4.
    Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. John Wiley & Sons, New YorkGoogle Scholar
  5. 5.
    Berben LA, Peters JC (2010) Chem Commun 46(3):398–400Google Scholar
  6. 6.
    Bryce MR, Cooke G, Duclairoir FMA, John P, Perepichka DF, Polwart N, Rotello VM, Stoddart JF, Tseng HR (2003) J Mater Chem 13(9):2111–2117Google Scholar
  7. 7.
    Cheng L, Cox JA (2002) Chem Mater 14(1):6–8Google Scholar
  8. 8.
    Cheng Z, Cheng L, Gao Q, Dong S, Yang X (2002) J Mater Chem 12(6):1724–1729Google Scholar
  9. 9.
    Chernyy S, Bousquet A, Torbensen K, Iruthayaraj J, Ceccato M, Pedersen SU, Daasbjerg K (2012) Langmuir 28(25):9573–9582Google Scholar
  10. 10.
    Chevalier CL, Landis EC (2015) Langmuir 31(31):8633–8641Google Scholar
  11. 11.
    Closs GL, Miller JR (1998) Science 240:440–447Google Scholar
  12. 12.
    Douvas AM, Makarona E, Glezos N, Argitis P, Mielczarski JA, Mielczarski E (2008) ACS Nano 2(4):733–742Google Scholar
  13. 13.
    Felts AK, Pollard WT, Freisner RA (1995) J Phys Chem 99(9):2929–2940Google Scholar
  14. 14.
    Gao LH, Wang KZ, Cai L, Zhang HX, Jin LP, Huang CH, Gao HJ (2006) J Phys Chem B 110(14):7402–7408Google Scholar
  15. 15.
    Gao LH, Hu XJ, Zhang DS, Guo Y, Wang KZ (2008) J Nanosci Nanotechnol 8:1355–1358Google Scholar
  16. 16.
    Gao LH, Wang YB, Bai LJ (2011) Spectrosc Spectr Anal 31:2192–2194Google Scholar
  17. 17.
    Gao LH, Lu S, Su JP, Wang KZ (2013) J Nanosci Nanotechnol 13(2):1377–1380Google Scholar
  18. 18.
    Gao LH, Su JP, Zhang JN, Wang KZ (2015) J Mater Sci 50(24):8064–8072Google Scholar
  19. 19.
    Hechavarria L, Mendoza N, Altuzar P, Hu HL (2010) J Solid State Electrochem 14(2):323–330Google Scholar
  20. 20.
    Huo Z, Zang D, Yang S, Farha R, Goldmann M, Hasenknopf B, Xu H, Ruhlmann L (2015) Electrochim Acta 179:326–335Google Scholar
  21. 21.
    Jiang K, Xie H, Zhan W (2009) Langmuir 25(18):11129–11136Google Scholar
  22. 22.
    Kim YS, Liang K, Law KY, Whitten DG (1994) J Phys Chem 98(3):984–988Google Scholar
  23. 23.
    Kowalewska B, Miecznikowski K, Makowski O, Palys B, Adamczyk L, Kulesza PJ (2007) J Solid State Electrochem 11(8):1023–1030Google Scholar
  24. 24.
    Kullapere M, Marandi M, Matisen L, Mirkhalaf F, Carvalho AE, Maia G, Sammelselg V, Tammeveski K (2012) J Solid State Electrochem 16(2):569–578Google Scholar
  25. 25.
    Laviron E (1979) J Electroanal Chem Interfacial Electrochem 101(1):19–28Google Scholar
  26. 26.
    Lei IA, Lai DF, Don TM, Chen WC, Yu YY, Chiu WY (2014) Mater Chem Phys 144(1-2):41–48Google Scholar
  27. 27.
    Mao X, Zhang JN, Gao LH, Su Y, Chen PX, Wang KZ (2016) J Nanosci Nanotechnol 16(4):3674–3678Google Scholar
  28. 28.
    Meng TT, Xue LX, Wang H, Wang KZ, Haga MA (2017) J Mater Chem C 5(13):3390–3396Google Scholar
  29. 29.
    Qi JM, Wang HL, Gao LH, Lin H, Wang KZ (2015) Mater Lett 153:33–35Google Scholar
  30. 30.
    Sereno L, Silbeer JJ, Otero L, Bohorquez MDV, Moore AL, Moore TA, Gust D (1996) J Phys Chem 100(2):814–821Google Scholar
  31. 31.
    Walsh JJ, Long DL, Cronin L, Bond AM, Forster RJ, Keyes TE (2011) Dalton Trans 40(9):2038–2045Google Scholar
  32. 32.
    Walsh JJ, Mallon CT, Bond AM, Keyes TE, Forster RJ (2012) Chem Commun 48(30):3593–3595Google Scholar
  33. 33.
    Walsh JJ, Zhu J, Zeng Q, Forster RJ, Keyes TE (2012) Dalton Trans 41(33):9928–9937Google Scholar
  34. 34.
    Walsh JJ, Zhu J, Bond AM, Forster RJ, Keyes TE (2013) J Electroanal Chem 706:93–101Google Scholar
  35. 35.
    Walsh JJ, Bond AM, Forster RJ, Keyes TE (2016) Coord Chem Rev 306:217–234Google Scholar
  36. 36.
    Xiang X, Fielden J, Rodrίguez-Córdoba WE, Huang ZQ, Zhang NF, Luo Z, Musaev DG, Lian TQ, Hill CL (2013) J Phys Chem C 117(2):918–926Google Scholar
  37. 37.
    Xue LX, Duan ZM, Jia J, Wang KZ, Haga MA (2014) Electrochim Acta 146:776–783Google Scholar
  38. 38.
    Xue LX, Meng TT, Zhao Y, Gao LH, Wang KZ (2015) Electrochim Acta 172:77–87Google Scholar
  39. 39.
    Yan B, Li Y, Calhoun SR, Cottrell NG, Lella DJ, Celestian AJ (2014) Inorg Chem Commun 43:23–36Google Scholar
  40. 40.
    Yang YJ, Yu XH (2016) J Solid State Electrochem 20(6):1697–1704Google Scholar
  41. 41.
    Yang W, Gao LH, Wang KZ (2014) Polyhedron 82:80–87Google Scholar
  42. 42.
    Yang W, Zheng ZB, Meng TT, Wang KZ (2015) J Mater Chem A 3(7):3441–3449Google Scholar
  43. 43.
    Ye HY, Qi JM, Sun R, Gao LH, Wang KZ (2017) Electrochim Acta 256:291–298Google Scholar
  44. 44.
    Zhang YQ, Gao LH, Duan ZM, Wang KZ, Wang YL, Gao HJ (2004) Acta Chim Sin 62:738–741Google Scholar
  45. 45.
    Zhang YQ, Gao LH, Wang KZ, Gao HJ, Wang LY (2008) J Nanosci Nanotechnol 8:1248–1253Google Scholar
  46. 46.
    Zhang H, Gao Q, Li HX (2016) J Solid State Electrochem 20(6):1565–1573Google Scholar
  47. 47.
    Zhang HL, Qi JM, Gao LH, Wang KZ (2016) Colloids Surf A Physicochem Eng Asp 492:119–126Google Scholar
  48. 48.
    Zhao WH, Su JP, Ye HY, Gao LH, Wang KZ (2017) Mater Res Bull 92:1–8Google Scholar
  49. 49.
    Zhu J, Zeng Q, O'Carroll S, Bond A, Keyes TE, Forster RJ (2011) Electrochem Commun 13(9):899–902Google Scholar
  50. 50.
    Zhu J, Walsh JJ, Bond AM, Keyes TE, Forster RJ (2012) Langmuir 28(37):13536–13541Google Scholar
  51. 51.
    Zhuang Y, Zhang D, Ju H (2005) Analyst 130(4):534–540Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Science, Key Laboratory of Cosmetic, China National Light IndustryBeijing Technology and Business UniversityBeijingChina
  2. 2.College of ChemistryBeijing Normal UniversityBeijingChina

Personalised recommendations