Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 101–108 | Cite as

A multifunctional silicotungstic acid-modified Li-rich manganese-based cathode material with excellent electrochemical properties

  • Tianfeng Geng
  • Chunyu Du
  • Xinqun Cheng
  • Xing Xu
  • Jiyuan Jian
  • Xiaoshu He
  • Pengjian Zuo
  • Geping Yin
Original Paper
  • 76 Downloads

Abstract

Li-rich layered oxide (LrLO) cathode has attracted much attention for Li-ion batteries in recent years due to its superior capacity of exceeding 250 mA h g−1. However, these materials still have some inherent drawbacks such as poor rate stability and cycle performance. In this paper, Li-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 was modified by silicotungstic acid (HSW) with high electronic and ionic conductivity via a facile approach. The material was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and electrochemical tests. The results showed that the thickness of HSW coating was about 5 nm. HSW coating could supply a transfer pathway for Li ions and electrons, resulting in the superior discharge capacity and rate capability. The HSW-LrLO could deliver 158.38 mA h g−1 even at high current density of 500 mA g−1, which was 26.9% higher than that of pristine LrLO. In addition, HSW-LrLO exhibited excellent cycling performance with the capacity retention over 90% at 1 and 5 C. These results were useful to develop effective surface modification for LrLO materials.

Keywords

Lithium-ion battery Li-rich layered oxide Silicotungstic acid coating Electronic and ionic conductivity 

Notes

Acknowledgments

This work was financially supported by the New Energy Project for Electric Vehicle of National Key Research and Development Program (2016YFB0100206) and the Natural Science Foundation of China (No. 51634003).

Supplementary material

10008_2018_4113_MOESM1_ESM.docx (917 kb)
ESM 1 (DOCX 917 kb)

References

  1. 1.
    Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024CrossRefGoogle Scholar
  2. 2.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176CrossRefGoogle Scholar
  3. 3.
    Liu J, Zhang J-G, Yang Z, Lemmon JP, Imhoff C, Graff GL, Li L, Hu J, Wang C, Xiao J, Xia G, Viswanathan VV, Baskaran S, Sprenkle V, Li X, Shao Y, Schwenzer B (2013) Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv Funct Mater 23(8):929–946CrossRefGoogle Scholar
  4. 4.
    Wei GZ, Lu X, Ke FS, Huang L, Li JT, Wang ZX, Zhou ZY, Sun SG (2010) Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater 22(39):4364–4367CrossRefGoogle Scholar
  5. 5.
    Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5(7):7854–7863CrossRefGoogle Scholar
  6. 6.
    Gu L, Zhu C, Li H, Yu Y, Li C, Tsukimoto S, Maier J, Ikuhara Y (2011) Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J Am Chem Soc 133(13):4661–4663CrossRefGoogle Scholar
  7. 7.
    Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125CrossRefGoogle Scholar
  8. 8.
    Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide “composite” electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267CrossRefGoogle Scholar
  9. 9.
    Hy S, Felix F, Rick J, Su WN, Hwang BJ (2014) Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5). J Am Chem Soc 136(3):999–1007CrossRefGoogle Scholar
  10. 10.
    Manthiram A, Knight JC, Myung S-T, Oh S-M, Sun Y-K (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6(1):1501010CrossRefGoogle Scholar
  11. 11.
    Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J Phys Chem Lett 4(8):1268–1280CrossRefGoogle Scholar
  12. 12.
    Croy JR, Balasubramanian M, Gallagher KG, Burrell AK (2015) Review of the U.S. Department of Energy’s “deep dive” effort to understand voltage fade in Li- and Mn-rich cathodes. Acc Chem Res 48(11):2813–2821CrossRefGoogle Scholar
  13. 13.
    Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4(108):63268–63284CrossRefGoogle Scholar
  14. 14.
    Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, VanTendeloo G, Tarascon JM (2015) Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater 14(2):230–238CrossRefGoogle Scholar
  15. 15.
    Luo D, Fang S, Tian Q, Qu L, Yang L, S-i H (2016) Discovery of a surface protective layer: a new insight into countering capacity and voltage degradation for high-energy lithium-ion batteries. Nano Energy 21:198–208CrossRefGoogle Scholar
  16. 16.
    Lee E, Park JS, Wu T, Sun C-J, Kim H, Stair PC, Lu J, Zhou D, Johnson CS (2015) Role of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade. J Mater Chem A 3(18):9915–9924CrossRefGoogle Scholar
  17. 17.
    Zhou L, Liu J, Huang L, Jiang N, Zheng Q, Lin D (2017) Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance. J Solid State Electrochem 21(12):3467–3477CrossRefGoogle Scholar
  18. 18.
    Zhao L, Wu Q, Wu J (2018) Improving rate performance of cathode material Li1.2Mn0.54Co0.13Ni0.13O2 via niobium doping. J Solid State Electrochem 22(7):2141–2148CrossRefGoogle Scholar
  19. 19.
    Li Y, Li S, Zhong B, Guo X, Wu Z, Xiang W, Liu H, Liu G (2017) Effect of Na2S treatment on the structural and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J Solid State Electrochem 22(2):547–554CrossRefGoogle Scholar
  20. 20.
    Kobayashi G, Irii Y, Matsumoto F, Ito A, Ohsawa Y, Yamamoto S, Cui Y, Son J-Y, Sato Y (2016) Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling. J Power Sources 303:250–256CrossRefGoogle Scholar
  21. 21.
    Liu H, Qian D, Verde MG, Zhang M, Baggetto L, An K, Chen Y, Carroll KJ, Lau D, Chi M, Veith GM, Meng YS (2015) Understanding the role of NH4F and Al2O3 surface co-modification on lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2. ACS Appl Mater Interfaces 7(34):19189–19200CrossRefGoogle Scholar
  22. 22.
    Zheng J, Gu M, Xiao J, Polzin BJ, Yan P, Chen X, Wang C, Zhang J-G (2014) Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem Mater 26(22):6320–6327CrossRefGoogle Scholar
  23. 23.
    Chong S, Chen Y, Yan W, Guo S, Tan Q, Wu Y, Jiang T, Liu Y (2016) Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries. J Power Sources 332:230–239CrossRefGoogle Scholar
  24. 24.
    Wu F, Zhang X, Zhao T, Li L, Xie M, Chen R (2015) Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 7(6):3773–3781CrossRefGoogle Scholar
  25. 25.
    Qiao QQ, Zhang HZ, Li GR, Ye SH, Wang CW, Gao XP (2013) Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries. J Mater Chem A 1(17):5262–5268CrossRefGoogle Scholar
  26. 26.
    Zhang X, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen X, Yassar RS, Axelbaum RL (2013) Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 3(10):1299–1307CrossRefGoogle Scholar
  27. 27.
    Xu M, Chen Z, Li L, Zhu H, Zhao Q, Xu L, Peng N, Gong L (2015) Highly crystalline alumina surface coating from hydrolysis of aluminum isopropoxide on lithium-rich layered oxide. J Power Sources 281:444–454CrossRefGoogle Scholar
  28. 28.
    Zhao E, Liu X, Zhao H, Xiao X, Hu Z (2015) Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization. Chem Commun 51(44):9093–9096CrossRefGoogle Scholar
  29. 29.
    Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey DG, Wei W (2015) A Li-rich layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. J Mater Chem A 3(7):3995–4003CrossRefGoogle Scholar
  30. 30.
    Kourasi M, Wills RGA, Shah AA, Walsh FC (2014) Heteropolyacids for fuel cell applications. Electrochim Acta 127:454–466CrossRefGoogle Scholar
  31. 31.
    Misono M (2001) Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state. Chem Commun 13:1141–1152CrossRefGoogle Scholar
  32. 32.
    Henningsson A, Rensmo H, Sandell A, Södergren S, Siegbahn H (2004) Insertion of H+, Li+, Na+ and K+ into thin films prepared from silicotungstic acid—a photoelectron spectroscopy study. Thin Solid Films 461(2):237–242CrossRefGoogle Scholar
  33. 33.
    MacDonald L, Rausch B, Symes MD, Cronin L (2018) Selective hydrogenation of nitroarenes using an electrogenerated polyoxometalate redox mediator. Chem Commun 54(9):1093–1096CrossRefGoogle Scholar
  34. 34.
    Chen C, Geng T, Du C, Zuo P, Cheng X, Ma Y, Yin G (2016) Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J Power Sources 331:91–99CrossRefGoogle Scholar
  35. 35.
    Liu H, Du C, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y (2014) An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J Mater Chem A 2(37):15640–15646CrossRefGoogle Scholar
  36. 36.
    Lee DK, Park SH, Amine K, Bang HJ, Parakash J, Sun YK (2006) High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. J Power Sources 162(2):1346–1350CrossRefGoogle Scholar
  37. 37.
    Deng YP, Yin ZW, Wu ZG, Zhang SJ, Fu F, Zhang T, Li JT, Huang L, Sun SG (2017) Layered/spinel heterostructured and hierarchical micro/nanostructured Li-rich cathode materials with enhanced electrochemical properties for Li-ion batteries. ACS Appl Mater Interfaces 9(25):21065–21070CrossRefGoogle Scholar
  38. 38.
    Ji H, Sun J, Wu P, Dai B, Chao Y, Zhang M, Jiang W, Zhu W, Li H (2016) Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. J Mol Catal A Chem 423:207–215CrossRefGoogle Scholar
  39. 39.
    Ji H, Sun J, Wu P, Wu Y, He J, Chao Y, Zhu W, Li H (2018) Silicotungstic acid immobilized on lamellar hexagonal boron nitride for oxidative desulfurization of fuel components. Fuel 213:12–21CrossRefGoogle Scholar
  40. 40.
    Liu Y, Shen J, Chen Z, Liu Y (2011) Degradation of p-chloronitrobenzene in drinking water by manganese silicate catalyzed ozonation. Desalination 279(1-3):219–224CrossRefGoogle Scholar
  41. 41.
    Moses AW, Flores HGG, Kim J-G, Langell MA (2007) Surface properties of LiCoO2, LiNiO2 and LiNi1−xCoxO2. Appl Surf Sci 253(10):4782–4791CrossRefGoogle Scholar
  42. 42.
    Li J, Wang L, Zhang Q, He X (2009) Synthesis and characterization of LiNi0.6Mn0.4−xCoxO2 as cathode materials for Li-ion batteries. J Power Sources 189(1):28–33CrossRefGoogle Scholar
  43. 43.
    Kang SH, Johnson CS, Vaughey JT, Amine K, Thackeray MM (2006) The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3·0.5 LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J Electrochem Soc 153:A1186–A1192CrossRefGoogle Scholar
  44. 44.
    Urban A, Abdellahi A, Dacek S, Artrith N, Ceder G (2017) Electronic-structure origin of cation disorder in transition-metal oxides. Phys Rev Lett 119(17):176402CrossRefGoogle Scholar
  45. 45.
    Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343(6170):519–522CrossRefGoogle Scholar
  46. 46.
    Pearce PE, Perez AJ, Rousse G, Saubanere M, Batuk D, Foix D, McCalla E, Abakumov AM, Van Tendeloo G, Doublet ML, Tarascon JM (2017) Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode beta-Li2IrO3. Nat Mater 16(5):580–586CrossRefGoogle Scholar
  47. 47.
    Yabuuchi N, Yoshii K, Myung S-T, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133(12):4404–4419CrossRefGoogle Scholar
  48. 48.
    Hong J, Lim H-D, Lee M, Kim S-W, Kim H, Oh S-T, Chung G-C, Kang K (2012) Critical role of oxygen evolved from layered Li–excess metal oxides in lithium rechargeable batteries. Chem Mater 24(14):2692–2697CrossRefGoogle Scholar
  49. 49.
    Deng Y-P, Fu F, Wu Z-G, Yin Z-W, Zhang T, Li J-T, Huang L, Sun S-G (2016) Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J Mater Chem A 4(1):257–263CrossRefGoogle Scholar
  50. 50.
    Shen CH, Huang L, Lin Z, Shen SY, Wang Q, Su H, Fu F, Zheng XM (2014) Kinetics and structural changes of Li-rich layered oxide 0.5Li2MnO3.0.5LiNi0.292Co0.375Mn0.333O2 material investigated by a novel technique combining in situ XRD and a multipotential step. ACS Appl Mater Interfaces 6(15):13271–13279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Institute of Advanced Chemical Power Sources, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations