Journal of Solid State Electrochemistry

, Volume 22, Issue 12, pp 3873–3881 | Cite as

Influence of synthesis temperature on cobalt metal-organic framework (Co-MOF) formation and its electrochemical performance towards supercapacitor electrodes

  • Wenlu Xuan
  • Rajendran Ramachandran
  • Changhui Zhao
  • Fei WangEmail author
Original Paper


We have synthesized cobalt metal-organic framework (Co-MOF) at different temperatures through solvothermal route as metal-organic frameworks which can be used for supercapacitors. The effect of synthesizing temperature on Co-MOF’s structure and porous behavior were analyzed with various characterization techniques like X-ray diffraction, Brunauer-Emmett-Teller surface analyzer, scanning electron microscope, and transmission electron microscope. The charge storage performance of the as-prepared Co-MOF’s was carried out in 3 M KOH. The results proved the excellent redox behavior of Co-MOFs, and a maximum specific capacitance of 952.5 F g−1 was obtained for Co-MOF/150 (synthesized at 150 °C) at a current density of 0.25 A g−1. The higher specific surface area and micropore of Co-MOF/150 significantly heightened the electrolyte ion transport during the electrochemical performance.

Graphical abstract


Metal-organic framework Specific capacitance Temperature Specific surface area 



This work was financially supported by the National Natural Science Foundation of China (Project No. 51505209). We also acknowledge the support from Shenzhen Science and Technology Innovation Committee (Project No. JCYJ20170412154426330 and KQTD2015071710313656). Fei Wang is also supported by Guangdong Natural Science Funds for Distinguished Young Scholar (Project No. 2016A030306042).

Supplementary material

10008_2018_4096_MOESM1_ESM.doc (8.7 mb)
ESM 1 (DOC 8953 kb)


  1. 1.
    Krishnamoorthy K, Pazhamalai P, Kim SJ (2017) Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor. Electrochim Acta 227:85–94CrossRefGoogle Scholar
  2. 2.
    Saranya M, Ramachandran R, Wang F (2016) Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J Sci Adv Mater Devices 1(4):454–460CrossRefGoogle Scholar
  3. 3.
    Pu J, Wang X, Xu R, Komvopoulos K (2016) Highly stretchable microsupercapacitor arrays with honeycomb structures for integrated wearable electronic systems. ACS Nano 10(10):9306–9315CrossRefGoogle Scholar
  4. 4.
    Sahoo S, Pazhamalai P, Krishnamoorthy K, Kim SJ (2018) Hydrothermally prepared α-MnSe nanoparticles as a new pseudocapacitive electrode material for supercapacitor. Electrochim Acta 268:403–410CrossRefGoogle Scholar
  5. 5.
    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541CrossRefGoogle Scholar
  6. 6.
    Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRefGoogle Scholar
  7. 7.
    Wang X, Liu L, Wang X, Bai L, Wu H, Zhang X, Yi L, Chen Q (2011) Preparation and performances of carbon aerogel microspheres for the application of supercapacitor. J Solid State Electrochem 15(4):643–648CrossRefGoogle Scholar
  8. 8.
    Pu J, Wang X, Zhang T, Li S, Liu J, Komnopoulos K (2016) High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite. Nanotechnol 27(4):045701CrossRefGoogle Scholar
  9. 9.
    Krishnamoorthy K, Thangavel S, Veetil JC, Raju N, Venugopal G, Kim SJ (2016) Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors. Int J Hydrog Energy 41(3):1672–1678CrossRefGoogle Scholar
  10. 10.
    Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2008) Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem Commun 0(35):4213–4215CrossRefGoogle Scholar
  11. 11.
    Abouali S, Garakani MA, Zhang B, Xu ZL, Heidari EK, Huang JQ, Huang J, Kim JK (2015) Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces 7(24):13503–13511CrossRefGoogle Scholar
  12. 12.
    Pazhamalai P, Krishnamoorthy K, Mariappan VK, Sahoo S, Manoharan S, Kim SJ (2018) A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with ionogel electrolyte. Adv Mater Interfaces 5(12):1800055CrossRefGoogle Scholar
  13. 13.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444CrossRefGoogle Scholar
  14. 14.
    Xia W, Mahmood A, Zou R, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8(7):1837–1866CrossRefGoogle Scholar
  15. 15.
    Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49(12):2796–2806CrossRefGoogle Scholar
  16. 16.
    Gao W, Chen D, Quan H, Zou R, Wang W, Luo X, Guo L (2017) Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain Chem Eng 5(5):4144–4153CrossRefGoogle Scholar
  17. 17.
    Shi C, Wang X, Gao Y, Rong H, Song Y, Liu H-J, Liu (2017) Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors. J Solid State Electrochem 21(8):2415–2423CrossRefGoogle Scholar
  18. 18.
    Ramachandran R, Zhao C, Luo D, Wang K, Wang F (2017) Synthesis of copper benzene-1, 3, 5-tricarboxylate metal organic frameworks with mixed phases as the electrode material for supercapacitor applications. Appl Surf Sci. CrossRefGoogle Scholar
  19. 19.
    Tsivion E, Mason JA, Gonzalez MI, Long JR, Head-Gordon M (2016) A computational study of CH4 storage in porous framework materials with metalated linkers: connecting the atomistic character of CH4 binding sites to usable capacity. Chem Sci 7(7):4503–4518CrossRefGoogle Scholar
  20. 20.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129CrossRefGoogle Scholar
  21. 21.
    Gao CY, Tian HR, Ai J, Li LJ, Dang S, Lan YQ, Sun ZM (2016) A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2. Chem Commun 52(74):11147–11150CrossRefGoogle Scholar
  22. 22.
    Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weseliński ŁJ, Solovyeva V, Adil K, Spanopoulos I, Trikalitis PN, Emwas AH, Eddaoudi M (2015) MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc 137(41):13308–13318CrossRefGoogle Scholar
  23. 23.
    Bárcia PS, Zapata F, Silva JA, Rodrigues AE, Chen B (2007) Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal−organic framework. J Phys Chem B 111(22):6101–6103CrossRefGoogle Scholar
  24. 24.
    Li K, Olson DH, Lee JY, Bi W, Wu K, Yuen T, Xu Q, Li J (2008) Multifunctional microporous MOFs exhibiting gas/hydrocarbon adsorption selectivity, separation capability and three-dimensional magnetic ordering. Adv Funct Mater 18(15):2205–2214CrossRefGoogle Scholar
  25. 25.
    Hu J, Cai H, Ren H, Wei Y, Xu Z, Liu H, Hu Y (2010) Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res 49(24):12605–12612CrossRefGoogle Scholar
  26. 26.
    Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu TL, O’Keeffe M, Wang L, Luo M, Lin RB, Chen B (2016) UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J Am Chem Soc 138(17):5678–5684CrossRefGoogle Scholar
  27. 27.
    Wang C, DeKrafft KE, Lin W (2012) Pt nanoparticles@ photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. J Am Chem Soc 134(17):7211–7214CrossRefGoogle Scholar
  28. 28.
    Valvekens P, Vandichel M, Waroquier M, Speybroeck VV, Vos DD (2014) Metal dioxidoterephthalate MOFs of the MOF 74 type: microporous basic catalysts with well defined active sites. J Catal 317:1–10CrossRefGoogle Scholar
  29. 29.
    Wu CD, Hu A, Zhang L, Lin W (2005) A homochiral porous metal– organic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc 127(25):8940–8941CrossRefGoogle Scholar
  30. 30.
    Srimuk P, Luanwuthi S, Krittayavathananon A, Sawangphruk M (2015) Solid type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim Acta 157:69–77CrossRefGoogle Scholar
  31. 31.
    Harvey SD, Eckberg AD, Thallapally PK (2011) Evaluation of copper-1,3,5-benzenetricarboxylate metal–organic framework (Cu MOF) as a selective sorbent for Lewis base analytes. J Sep Sci 34(18):2418–2426CrossRefGoogle Scholar
  32. 32.
    Lee DY, Yoon SJ, Shrestha NK, Lee SH, Ahn H, Han SH (2012) Unusual energy storage and charge retention in Co-based metal-organic frameworks. Microporous Mesoporous Mater 153:163–165CrossRefGoogle Scholar
  33. 33.
    Díaz R, Orcajo MG, Botas JA, Calleja G, Palma J (2012) Co-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128CrossRefGoogle Scholar
  34. 34.
    Yang J, Ma Z, Gao W, Wei M (2017) Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode. Chem Eur J 23(3):631–636CrossRefGoogle Scholar
  35. 35.
    Wen P, Gong P, Sun J, Wang J, Yang S (2015) Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A 3(26):13874–13883CrossRefGoogle Scholar
  36. 36.
    Yang J, Zheng C, Xiong P, Li Y, Wei M (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2(44):19005–19010CrossRefGoogle Scholar
  37. 37.
    Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M (2016) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220–224CrossRefGoogle Scholar
  38. 38.
    Campagnol N, Romero-Vara R, Deleu W, Stappers L, Binnemans K, De Vos DE, Fransaer J (2014) A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100 (Fe). ChemElectroChem 1(7):1182–1188CrossRefGoogle Scholar
  39. 39.
    Jhung SH, Lee JH, Yoon JW, Serre C, Férey G, Chang JS (2007) Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv Mater 19(1):121–124CrossRefGoogle Scholar
  40. 40.
    Choi KM, Jeong HM, Park JH, Zhang YB, Kang JK, Yaghi OM (2014) Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8(7):7451–7457CrossRefGoogle Scholar
  41. 41.
    Lee DY, Shinde DV, Kim EK, Lee W, Oh IW, Shrestha NK, Lee JK, Han SH (2013) Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology. Microporous Mesoporous Mater 171:53–57CrossRefGoogle Scholar
  42. 42.
    Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923CrossRefGoogle Scholar
  43. 43.
    Yu G, Sun J, Muhammad F, Wang P, Zhu G (2014) Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene. RSC Adv 4(73):38804–38811CrossRefGoogle Scholar
  44. 44.
    Zhou G, Zhu J, Chen Y, Mei L, Duan X, Zhang G, Chen L, Wang T, Lu B (2014) Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim Acta 123:450–455CrossRefGoogle Scholar
  45. 45.
    An C, Wang Y, Huang Y, Xu Y, Jiao L, Yuan H (2014) Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique. Nano Energy 10:125–134CrossRefGoogle Scholar
  46. 46.
    Jiao Y, Pei J, Yan C, Chen D, Hu Y, Chen G (2016) Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices. J Mater Chem A 4(34):13344–13351CrossRefGoogle Scholar
  47. 47.
    Liu X, Shi C, Zhai C, Cheng M, Liu Q, Wang G (2016) Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl Mater Interfaces 8(7):4585–4591CrossRefGoogle Scholar
  48. 48.
    Srinivasan V, Weidner JW (2002) Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J Power Sources 108(1-2):15–20CrossRefGoogle Scholar
  49. 49.
    Ramachandran R, Zhao C, Luo D, Wang K, Wang F (2018) Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials. Electrochim Acta 267:170–180CrossRefGoogle Scholar
  50. 50.
    Zhao YQ, Zhao DD, Tang PY, Wang YM, Xu CL, Li HL (2012) MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy. Mater Lett 76:127–130CrossRefGoogle Scholar
  51. 51.
    Gao Y, Chen S, Cao D, Wang G, Yin J (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195(6):1757–1760CrossRefGoogle Scholar
  52. 52.
    Liu XM, Zhang XG, Fu SY (2006) Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Mater Res Bull 41(3):620–627CrossRefGoogle Scholar
  53. 53.
    Ramachandran R, Saranya M, Kollu P, Raghupathy BP, Jeong SK, Grace AN (2015) Solvothermal synthesis of zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes. Electrochim Acta 178:647–657CrossRefGoogle Scholar
  54. 54.
    Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci 5(11):9269–9290CrossRefGoogle Scholar
  55. 55.
    Arul NS, Mangalaraj D, Ramachandran R, Grace AN, Han JI (2015) Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J Mater Chem A 3(29):15248–15258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenChina
  2. 2.Shenzhen Key Laboratory of 3rd Generation Semiconductor DevicesShenzhenChina
  3. 3.SUSTech Academy for Advanced Interdisciplinary StudiesShenzhenChina
  4. 4.State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations