Journal of Solid State Electrochemistry

, Volume 22, Issue 12, pp 3863–3871 | Cite as

Structural and transport studies of CdI2-doped silver borotellurite fast ion-conducting system

  • Puli Nageswar RaoEmail author
  • E. Ramesh Kumar
  • B. Appa Rao
Original Paper


Fast ion-conducting (FIC) system composed of xCdI2–(100–x)[44.4Ag2SO4–55.6(40TeO2–60B2O3)] has been prepared by melt-quenching method. The prepared samples were characterized by X-ray diffraction (XRD), impedance, and transport studies. XRD, DSC studies conclude that the samples with x = 0 to 20 show predominantly glassy nature. Conductivity measurements were performed in the frequency range 20 Hz–3 MHz by varying temperature from 30 to 150 °C. Electrical parameters such as conductivity and activation energies of all the samples were evaluated by complex impedance analysis and Arrhenius plots, respectively. The obtained results of conductivity are discussed using exchange reaction between the cations based on Lewis’ hard and soft acids and bases (HSAB) principle. Ionic conductivity is identified as being mainly due to Ag+ ions. The highest conductivity (order of 10−4 S cm−1) and ionic current (2.063 μA) is observed for CBT20 sample at room temperature; hence, it can be used as the best electrolyte material for solid-state battery application.


Fast ion-conducting materials AC conductivity DC conductivity Transport number Mobility Ionic conductivity 


  1. 1.
    Nageswar Rao P, Ramesh Kumar E, Appa Rao B (2018) J Mater Sci Mater Electron 29(13):11247–11257Google Scholar
  2. 2.
    Nageswar Rao P, Ramesh Kumar E, Appa Rao B (2018) Ionics.
  3. 3.
    Bella F, Verna A, Gerbaldi C (2018) Mater Sci Semicond Process 73:92–98CrossRefGoogle Scholar
  4. 4.
    Galliano S, Bella F, Piana G, Giacona G, Viscardi G, Gerbaldi C, Grätzel M, Barolo C (2018) Sol Energy 163:251–255CrossRefGoogle Scholar
  5. 5.
    Shanti R, Bella F, Salim YS, Chee SY, Ramesh S, Ramesh K (2016) Mater Des 108:560–569CrossRefGoogle Scholar
  6. 6.
    Ramesh Kumar E, Nageswar Rao P, Rajani Kumari K, Veeraiah N, Appa Rao B (2018) J Mater Sci Mater Electron.
  7. 7.
    Veeranna Gowda VC, Anavekar RV (2007) J Mater Sci 42(11):3816–3824CrossRefGoogle Scholar
  8. 8.
    Jayswal MS, Kanchan DK, Sharma P, Pant M (2011) Solid State Ionics 186(1):7–13CrossRefGoogle Scholar
  9. 9.
    Padmasree KP, Kanchan DK (2008) J Solid State Electrochem 12(12):1561–1565CrossRefGoogle Scholar
  10. 10.
    Hanaya M, Hatate A, Oguni M (2003) J Phys Condens Matter 15(23):3867–3873CrossRefGoogle Scholar
  11. 11.
    Kuwata N, Saito T, Tatsumisago M, Minami T, Kawamura J (2004) Solid State Ionics 175(1-4):679–682CrossRefGoogle Scholar
  12. 12.
    Ramesh Kumar E, Nageswar Rao P, Appa Rao B (2016) IOP Conf Ser Mater Sci Eng 149:012185CrossRefGoogle Scholar
  13. 13.
    Agrawal RC, Verma ML, Gupta RK, Kumar R (2002) J Phys D Appl Phys 35(8):810–815CrossRefGoogle Scholar
  14. 14.
    Pearson RG (1968) J Chem Educ 45(9):581CrossRefGoogle Scholar
  15. 15.
    Suresh Kumar R, Hariharan K (1997) Solid State Ionics 104(3-4):227–236CrossRefGoogle Scholar
  16. 16.
    El-Damrawi G, Hassan AK, Meikail MS (1996) Phys Chem Glasses 37:101Google Scholar
  17. 17.
    El-Damrawi G (1995) J Phys Condens Matter 8:1557CrossRefGoogle Scholar
  18. 18.
    Sujatha B, Narayana Reddy C, Chakradhar RPS (2010) Philos Mag 90(19):2635–2650CrossRefGoogle Scholar
  19. 19.
    Pakhomov GB, Neverov SL (1999) Russ Solid State Ionics 119(1-4):235–244CrossRefGoogle Scholar
  20. 20.
    Lefterova ED, Angelov PV, Dimitriev YB (2000) Phys Chem Glasses 41:362Google Scholar
  21. 21.
    Zhang T, Masumoto T (1993) J Non-Cryst Solids 156–158:473Google Scholar
  22. 22.
    Ramesh Kumar E, Nageswar Rao P, Veeraiah N, Appa Rao B,(2018) Ionics,
  23. 23.
    Yamamoto H, Nasu H, Matsusoka J, Kamiya K (1994) J Non-Cryst Solids 170(1):87–96CrossRefGoogle Scholar
  24. 24.
    Nanba T, Osaka A, Takada J, Miura Y, Inoue H, Akasaka Y, Hagihara H, Yasui I (1992) J Non-Cryst Solids 140:269–274CrossRefGoogle Scholar
  25. 25.
    Li Z (2010) Electrochim Acta 5:7298–7304CrossRefGoogle Scholar
  26. 26.
    Maier J (1995) Solid State Ionics 75:139–145CrossRefGoogle Scholar
  27. 27.
    Fan L, Ma Y, Wang X, Singh M, Zhu B (2014) J Mater Chem A 2(15):5399–5407CrossRefGoogle Scholar
  28. 28.
    Iqbal MZ, Rafiuddin (2016) Mater Sci Forum 842:76–87CrossRefGoogle Scholar
  29. 29.
    Kanchan DK, Padmasree KP, Panchal HR, Kulkarni AR (2004) Ceram Int 30(7):1655–1660CrossRefGoogle Scholar
  30. 30.
    Murugesan SSA, Maruthamuthu P (2002) Solid State Ionics 154–155:621CrossRefGoogle Scholar
  31. 31.
    Padmasree KP, Kanchan DK, Panchal HR, Awasthi AM, Bharadwaj S (2005) Solid State Commun 136(2):102–107CrossRefGoogle Scholar
  32. 32.
    Kabi S, Ghosh A (2011) J Phys Chem C 115(19):9760–9766. CrossRefGoogle Scholar
  33. 33.
    El-Damrawi G, Hassan AK, Doweidar H (2000) Phys B 291(1-2):34–40CrossRefGoogle Scholar
  34. 34.
    Nageswar Rao P, Ramesh Kumar E, Krishna Murthy Goud K, Appa Rao B (2017) IJEATE 7(11):173–180Google Scholar
  35. 35.
    Jonscher AK (1977) Nature 267(5613):673–679CrossRefGoogle Scholar
  36. 36.
    Lefterova E, Bliznakov S, Peter A, Vassilev S, Dimitriev Y (2005) Proceedings of the International Workshop “Portable and Emergency Energy Sources from Materials to Systems: 6Google Scholar
  37. 37.
    Bordeenithikasem P, Liu J, Kube SA, Li Y, Ma T, Scanley BE, Broadbridge CC, Vlassak JJ, Singer JP, Schroers J (2017) Sci Rep 7(1):7155CrossRefGoogle Scholar
  38. 38.
    Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50(13):3501–3512. CrossRefGoogle Scholar
  39. 39.
    Lefterova E, Angelov P, Ilcheva V, Petkova T, Dimitriev Y, (2004) Nanoscience & nanotechnology, Balabanova E, Dragieva I, 4th edn. Heron Press, SofiaGoogle Scholar
  40. 40.
    Rada S, Culea M, Culea E (2008) J Non-Cryst Solids 354(52-54):5491–5495CrossRefGoogle Scholar
  41. 41.
    Konijnendijk WL, Stevels JM (1975) J Non-Cryst Solids 18:30CrossRefGoogle Scholar
  42. 42.
    Bhargava A, Snyder RL, Condrate RA (1987) Mater Res Bull 22(12):1603–1611CrossRefGoogle Scholar
  43. 43.
    Pascuta P, Pop L, Rada S, Bosca M, Culea E (2008) J Mater Sci Mater Electron 19(5):424CrossRefGoogle Scholar
  44. 44.
    Meunier G, Dormoy R, Levasseur A (1989) Mater Sci Eng B 3(1-2):19–23CrossRefGoogle Scholar
  45. 45.
    Natarajan M, Rao CNR (1970) J Chem Soc A:3087Google Scholar
  46. 46.
    Kozhukharov V, Nikolav S, Marinov M, Troev T (1979) Mater Res Bull 14(6):735–741CrossRefGoogle Scholar
  47. 47.
    Arnaudov M, Dimitrov V, Dimitriev Y, Markova L (1982) Mater Res Bull 17(9):1121–1129CrossRefGoogle Scholar
  48. 48.
    Rada S, Culea E, Rus V, Pica M, Culea M (2008) J Mater Sci 43(10):3713–3716CrossRefGoogle Scholar
  49. 49.
    Levasseur A, Brethous JC, Reau JM, Hagenmuller P, Couzi M (1980) Solid State Ionics 1(3-4):177–186CrossRefGoogle Scholar
  50. 50.
    Sharma P, Kanchan DK, Gondaliya N, Pant M, Jayswal M, Joge P (2013) Indian J Pure Appl Phys 51(5):346–349Google Scholar
  51. 51.
    Padmasree K, Kanchan DK (2006) J Non-Cryst Solids 352(36-37):3841–3848CrossRefGoogle Scholar
  52. 52.
    Suthanthiraraj SA, Methew V (2008) Ionics 14(1):79–83CrossRefGoogle Scholar
  53. 53.
    Jayswal MS, Kanchan DK, Sharma P, Pant M (2011) Solid State Ionics 186(1):7–13CrossRefGoogle Scholar
  54. 54.
    Kumar RS, Hariharan K (1997) Solid State Ionics 104(3–4):227–237CrossRefGoogle Scholar
  55. 55.
    Minami T (1985) J Non-Cryst Solids 73(1-3):273–284CrossRefGoogle Scholar
  56. 56.
    Prasad PSS, Radhakrishna S (1988) Solid State Ionics 28-30(1):814–820CrossRefGoogle Scholar
  57. 57.
    Minami T, Ikeda Y, Tanaka M (1982) J Non-Cryst Solids 52(1-3):159–169CrossRefGoogle Scholar
  58. 58.
    Hassan Md, Rafiuddin R, (2008) Hindawi Publishing Corporation, Research Letters in Physics 249402Google Scholar
  59. 59.
    Almond DP, West AR, Grant RJ (1982) Solid State Commun 44(8):1277–1280CrossRefGoogle Scholar
  60. 60.
    Almond DP, Duncan GK, West AR (1983) Solid State Ionics 8(2):159–164CrossRefGoogle Scholar
  61. 61.
    Almond DP, Hunter CC, West AR (1984) The extraction of ionic conductivities and hopping rates from a.c. conductivity data. J Mater Sci 19(10):3236–3248. CrossRefGoogle Scholar
  62. 62.
    Gowda VCV, Anavekar RV (2007) J Mater Sci 42(11):3816–3824CrossRefGoogle Scholar
  63. 63.
    Masoud EM, Khairy M, Mousa MA (2013) Electrical properties of fast ion conducting silver based borate glasses: application in solid battery. J Alloys Compd 569:150–155CrossRefGoogle Scholar
  64. 64.
    Keen DA, Mc Greevy RL (1990) Nature 344(6265):423–425CrossRefGoogle Scholar
  65. 65.
    Gondaliya N, Kanchan DK, Sharma P, Joge P (2011) Mater Sci Appl 2(11):1639–1643Google Scholar
  66. 66.
    Barde RV, Waghuley SA (2013) J Adv Ceram 2(3):246–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Puli Nageswar Rao
    • 1
    Email author
  • E. Ramesh Kumar
    • 1
  • B. Appa Rao
    • 1
  1. 1.Department of PhysicsOsmania UniversityHyderabadIndia

Personalised recommendations