Structural and transport studies of CdI2-doped silver borotellurite fast ion-conducting system
- 42 Downloads
Abstract
Fast ion-conducting (FIC) system composed of xCdI2–(100–x)[44.4Ag2SO4–55.6(40TeO2–60B2O3)] has been prepared by melt-quenching method. The prepared samples were characterized by X-ray diffraction (XRD), impedance, and transport studies. XRD, DSC studies conclude that the samples with x = 0 to 20 show predominantly glassy nature. Conductivity measurements were performed in the frequency range 20 Hz–3 MHz by varying temperature from 30 to 150 °C. Electrical parameters such as conductivity and activation energies of all the samples were evaluated by complex impedance analysis and Arrhenius plots, respectively. The obtained results of conductivity are discussed using exchange reaction between the cations based on Lewis’ hard and soft acids and bases (HSAB) principle. Ionic conductivity is identified as being mainly due to Ag+ ions. The highest conductivity (order of 10−4 S cm−1) and ionic current (2.063 μA) is observed for CBT20 sample at room temperature; hence, it can be used as the best electrolyte material for solid-state battery application.
Keywords
Fast ion-conducting materials AC conductivity DC conductivity Transport number Mobility Ionic conductivityReferences
- 1.Nageswar Rao P, Ramesh Kumar E, Appa Rao B (2018) J Mater Sci Mater Electron 29(13):11247–11257Google Scholar
- 2.Nageswar Rao P, Ramesh Kumar E, Appa Rao B (2018) Ionics. https://doi.org/10.1007/s11581-018-2550-2
- 3.Bella F, Verna A, Gerbaldi C (2018) Mater Sci Semicond Process 73:92–98CrossRefGoogle Scholar
- 4.Galliano S, Bella F, Piana G, Giacona G, Viscardi G, Gerbaldi C, Grätzel M, Barolo C (2018) Sol Energy 163:251–255CrossRefGoogle Scholar
- 5.Shanti R, Bella F, Salim YS, Chee SY, Ramesh S, Ramesh K (2016) Mater Des 108:560–569CrossRefGoogle Scholar
- 6.Ramesh Kumar E, Nageswar Rao P, Rajani Kumari K, Veeraiah N, Appa Rao B (2018) J Mater Sci Mater Electron. https://doi.org/10.1007/2Fs10854-018-8857-y
- 7.Veeranna Gowda VC, Anavekar RV (2007) J Mater Sci 42(11):3816–3824CrossRefGoogle Scholar
- 8.Jayswal MS, Kanchan DK, Sharma P, Pant M (2011) Solid State Ionics 186(1):7–13CrossRefGoogle Scholar
- 9.Padmasree KP, Kanchan DK (2008) J Solid State Electrochem 12(12):1561–1565CrossRefGoogle Scholar
- 10.Hanaya M, Hatate A, Oguni M (2003) J Phys Condens Matter 15(23):3867–3873CrossRefGoogle Scholar
- 11.Kuwata N, Saito T, Tatsumisago M, Minami T, Kawamura J (2004) Solid State Ionics 175(1-4):679–682CrossRefGoogle Scholar
- 12.Ramesh Kumar E, Nageswar Rao P, Appa Rao B (2016) IOP Conf Ser Mater Sci Eng 149:012185CrossRefGoogle Scholar
- 13.Agrawal RC, Verma ML, Gupta RK, Kumar R (2002) J Phys D Appl Phys 35(8):810–815CrossRefGoogle Scholar
- 14.Pearson RG (1968) J Chem Educ 45(9):581CrossRefGoogle Scholar
- 15.Suresh Kumar R, Hariharan K (1997) Solid State Ionics 104(3-4):227–236CrossRefGoogle Scholar
- 16.El-Damrawi G, Hassan AK, Meikail MS (1996) Phys Chem Glasses 37:101Google Scholar
- 17.El-Damrawi G (1995) J Phys Condens Matter 8:1557CrossRefGoogle Scholar
- 18.Sujatha B, Narayana Reddy C, Chakradhar RPS (2010) Philos Mag 90(19):2635–2650CrossRefGoogle Scholar
- 19.Pakhomov GB, Neverov SL (1999) Russ Solid State Ionics 119(1-4):235–244CrossRefGoogle Scholar
- 20.Lefterova ED, Angelov PV, Dimitriev YB (2000) Phys Chem Glasses 41:362Google Scholar
- 21.Zhang T, Masumoto T (1993) J Non-Cryst Solids 156–158:473Google Scholar
- 22.Ramesh Kumar E, Nageswar Rao P, Veeraiah N, Appa Rao B,(2018) Ionics, https://doi.org/10.1007/s11581-018-2592-5
- 23.Yamamoto H, Nasu H, Matsusoka J, Kamiya K (1994) J Non-Cryst Solids 170(1):87–96CrossRefGoogle Scholar
- 24.Nanba T, Osaka A, Takada J, Miura Y, Inoue H, Akasaka Y, Hagihara H, Yasui I (1992) J Non-Cryst Solids 140:269–274CrossRefGoogle Scholar
- 25.Li Z (2010) Electrochim Acta 5:7298–7304CrossRefGoogle Scholar
- 26.Maier J (1995) Solid State Ionics 75:139–145CrossRefGoogle Scholar
- 27.Fan L, Ma Y, Wang X, Singh M, Zhu B (2014) J Mater Chem A 2(15):5399–5407CrossRefGoogle Scholar
- 28.Iqbal MZ, Rafiuddin (2016) Mater Sci Forum 842:76–87CrossRefGoogle Scholar
- 29.Kanchan DK, Padmasree KP, Panchal HR, Kulkarni AR (2004) Ceram Int 30(7):1655–1660CrossRefGoogle Scholar
- 30.Murugesan SSA, Maruthamuthu P (2002) Solid State Ionics 154–155:621CrossRefGoogle Scholar
- 31.Padmasree KP, Kanchan DK, Panchal HR, Awasthi AM, Bharadwaj S (2005) Solid State Commun 136(2):102–107CrossRefGoogle Scholar
- 32.Kabi S, Ghosh A (2011) J Phys Chem C 115(19):9760–9766. https://doi.org/10.1021/jp2018296 CrossRefGoogle Scholar
- 33.El-Damrawi G, Hassan AK, Doweidar H (2000) Phys B 291(1-2):34–40CrossRefGoogle Scholar
- 34.Nageswar Rao P, Ramesh Kumar E, Krishna Murthy Goud K, Appa Rao B (2017) IJEATE 7(11):173–180Google Scholar
- 35.Jonscher AK (1977) Nature 267(5613):673–679CrossRefGoogle Scholar
- 36.Lefterova E, Bliznakov S, Peter A, Vassilev S, Dimitriev Y (2005) Proceedings of the International Workshop “Portable and Emergency Energy Sources from Materials to Systems: 6Google Scholar
- 37.Bordeenithikasem P, Liu J, Kube SA, Li Y, Ma T, Scanley BE, Broadbridge CC, Vlassak JJ, Singer JP, Schroers J (2017) Sci Rep 7(1):7155CrossRefGoogle Scholar
- 38.Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50(13):3501–3512. https://doi.org/10.1016/S1359-6454(02)00166-0 CrossRefGoogle Scholar
- 39.Lefterova E, Angelov P, Ilcheva V, Petkova T, Dimitriev Y, (2004) Nanoscience & nanotechnology, Balabanova E, Dragieva I, 4th edn. Heron Press, SofiaGoogle Scholar
- 40.Rada S, Culea M, Culea E (2008) J Non-Cryst Solids 354(52-54):5491–5495CrossRefGoogle Scholar
- 41.Konijnendijk WL, Stevels JM (1975) J Non-Cryst Solids 18:30CrossRefGoogle Scholar
- 42.Bhargava A, Snyder RL, Condrate RA (1987) Mater Res Bull 22(12):1603–1611CrossRefGoogle Scholar
- 43.Pascuta P, Pop L, Rada S, Bosca M, Culea E (2008) J Mater Sci Mater Electron 19(5):424CrossRefGoogle Scholar
- 44.Meunier G, Dormoy R, Levasseur A (1989) Mater Sci Eng B 3(1-2):19–23CrossRefGoogle Scholar
- 45.Natarajan M, Rao CNR (1970) J Chem Soc A:3087Google Scholar
- 46.Kozhukharov V, Nikolav S, Marinov M, Troev T (1979) Mater Res Bull 14(6):735–741CrossRefGoogle Scholar
- 47.Arnaudov M, Dimitrov V, Dimitriev Y, Markova L (1982) Mater Res Bull 17(9):1121–1129CrossRefGoogle Scholar
- 48.Rada S, Culea E, Rus V, Pica M, Culea M (2008) J Mater Sci 43(10):3713–3716CrossRefGoogle Scholar
- 49.Levasseur A, Brethous JC, Reau JM, Hagenmuller P, Couzi M (1980) Solid State Ionics 1(3-4):177–186CrossRefGoogle Scholar
- 50.Sharma P, Kanchan DK, Gondaliya N, Pant M, Jayswal M, Joge P (2013) Indian J Pure Appl Phys 51(5):346–349Google Scholar
- 51.Padmasree K, Kanchan DK (2006) J Non-Cryst Solids 352(36-37):3841–3848CrossRefGoogle Scholar
- 52.Suthanthiraraj SA, Methew V (2008) Ionics 14(1):79–83CrossRefGoogle Scholar
- 53.Jayswal MS, Kanchan DK, Sharma P, Pant M (2011) Solid State Ionics 186(1):7–13CrossRefGoogle Scholar
- 54.Kumar RS, Hariharan K (1997) Solid State Ionics 104(3–4):227–237CrossRefGoogle Scholar
- 55.Minami T (1985) J Non-Cryst Solids 73(1-3):273–284CrossRefGoogle Scholar
- 56.Prasad PSS, Radhakrishna S (1988) Solid State Ionics 28-30(1):814–820CrossRefGoogle Scholar
- 57.Minami T, Ikeda Y, Tanaka M (1982) J Non-Cryst Solids 52(1-3):159–169CrossRefGoogle Scholar
- 58.Hassan Md, Rafiuddin R, (2008) Hindawi Publishing Corporation, Research Letters in Physics 249402Google Scholar
- 59.Almond DP, West AR, Grant RJ (1982) Solid State Commun 44(8):1277–1280CrossRefGoogle Scholar
- 60.Almond DP, Duncan GK, West AR (1983) Solid State Ionics 8(2):159–164CrossRefGoogle Scholar
- 61.Almond DP, Hunter CC, West AR (1984) The extraction of ionic conductivities and hopping rates from a.c. conductivity data. J Mater Sci 19(10):3236–3248. https://doi.org/10.1007/BF00549810 CrossRefGoogle Scholar
- 62.Gowda VCV, Anavekar RV (2007) J Mater Sci 42(11):3816–3824CrossRefGoogle Scholar
- 63.Masoud EM, Khairy M, Mousa MA (2013) Electrical properties of fast ion conducting silver based borate glasses: application in solid battery. J Alloys Compd 569:150–155CrossRefGoogle Scholar
- 64.Keen DA, Mc Greevy RL (1990) Nature 344(6265):423–425CrossRefGoogle Scholar
- 65.Gondaliya N, Kanchan DK, Sharma P, Joge P (2011) Mater Sci Appl 2(11):1639–1643Google Scholar
- 66.Barde RV, Waghuley SA (2013) J Adv Ceram 2(3):246–251CrossRefGoogle Scholar