Advertisement

Study on the morphology and photocatalytic activity of TiO2 nanotube arrays produced by anodizing in organic electrolyte with Ni, Na, and C as dopants

  • M. Alitabar
  • H. Yoozbashizadeh
Original Paper
  • 5 Downloads

Abstract

The main purpose of this research work is to investigate the effect of nickel as metal dopant on the morphology and photocatalytic activity of TiO2 nanotube arrays synthesized in the organic electrolyte by anodizing process containing sodium carbonate as an additive (TNAS). In order to characterize the synthesized nanotubes, various analyses such as FESEM, XRD, FTIR, XPS, DRS, and EIS were applied. The results of XPS and FTIR tests evaluate the participation of sodium (Na), nickel (Ni), and carbon (C) in the lattice of nanotubes as dopants. According to the DRS and UV-visible tests results, the band gap energy of TiO2 nanotube arrays decreases from 3.20 to ~ 2.64 eV as well as the absorption edge extends from UV-light region (396 nm) to visible light region (510 nm). However, the photocurrent density of doped TiO2 nanotubes increased about 10 times higher than that of the pristine compounds.

Graphical Abstract

Keywords

Doped TiO2 nanotube arrays Nickel sulfate Sodium carbonate Band gap energy Photocurrent density 

Notes

Acknowledgements

The authors are grateful to the corrosion and processing and extraction of materials and laboratories of the Department of Material Science and Engineering at Sharif University of Technology.

References

  1. 1.
    Li Y, Xiang Y, Peng S, Wang X, Zhou L (2013) Electrochim Acta 87:794–800CrossRefGoogle Scholar
  2. 2.
    Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) J Environ Manag 198(Pt 2):78–94CrossRefGoogle Scholar
  3. 3.
    Mollavali M, Falamaki C, Rohani S (2016) Int J Hydrog Energy 41(14):5887–5901CrossRefGoogle Scholar
  4. 4.
    Mollavali M, Falamaki C, Rohani S (2015) Int J Hydrog Energy 40(36):12239–12252CrossRefGoogle Scholar
  5. 5.
    Rani S, Roy SC, Paulose M, Varghese OK, Mor GK, Kim S, Yoriya S, LaTempa TJ, Grimes CA (2010) Phys Chem Chem Phys 12(12):2780–2800CrossRefGoogle Scholar
  6. 6.
    Kong J, Song C, Zhang W, Xiong Y, Wan M, Wang Y (2017) Superlattice Microstruct 109:579–587CrossRefGoogle Scholar
  7. 7.
    Lekphet W, Ho SY, Su C, Sireesha P, Kathirvel S, Lin YF, Li WR (2018) J Nanosci Nanotechnol 18(2):967–975CrossRefGoogle Scholar
  8. 8.
    Gao L, Li Y, Ren J, Wang S, Wang R, Fu G, Hu Y (2017) Appl Catal B 202:127–133CrossRefGoogle Scholar
  9. 9.
    Huang J, Shi Z, Dong X (2016) J Energy Chemist 25(1):136–140CrossRefGoogle Scholar
  10. 10.
    Jansi Rani B, Saravanakumar B, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2018) J Nanosci Nanotechnol 18(7):4658–4666CrossRefGoogle Scholar
  11. 11.
    Liu Q, Ding D, Ning C, Wang X (2015) Mater Sci Eng B 202:54–60CrossRefGoogle Scholar
  12. 12.
    Lee J, Park MS, Kim KJ (2017) J Power Sources 341:212–218CrossRefGoogle Scholar
  13. 13.
    Wang J, Zhao YF, Wang T, Li H, Li C (2015) Phys Condens Matter 478:6–11CrossRefGoogle Scholar
  14. 14.
    Wang Y, Zhang R, Li J, Li L, Lin S (2014) Nanoscale Res Lett 9(1):46–59CrossRefGoogle Scholar
  15. 15.
    Liu Q, Ding D, Ning C, Wang X (2015) Int J Hydrog Energy 40(5):2107–2114CrossRefGoogle Scholar
  16. 16.
    Lee K, Mazare A, Schmuki P (2014) ChemRev 114:9385–9454Google Scholar
  17. 17.
    Tan YN, Wong CL, Mohamed AR (2011) Int Sch Res Notices 2011:55–73Google Scholar
  18. 18.
    Chen H, Li X, Wan R (2017) Comput Condens Matter 13:16–28CrossRefGoogle Scholar
  19. 19.
    Zou M, Feng L, Thomas T, Yang M (2017) Catal Sci Technol 17:4182–4192CrossRefGoogle Scholar
  20. 20.
    Alitabar M, Yoozbashizadeh H (2017) Mater Res Bull 95:169–176CrossRefGoogle Scholar
  21. 21.
    Zhang YP, Li CZ (2012) J Am Ceram Soc 95:2951–2963CrossRefGoogle Scholar
  22. 22.
    Shalini S, Prabavathy N, Balasundaraprabhu R, Satish Kumar T, Walke P, Prasanna S, Velayuthapillai D (2016) J Mater Sci Mater Electron 16:1–9Google Scholar
  23. 23.
    ZY, JF, TS, LC, JZBX (2010) ACS Appl Mater Interfaces 2 :617–2622Google Scholar
  24. 24.
    Li Z, Ding D, Liu Q, Ning C, Wang X (2014) Nanoscale Res Lett 9(1):118–127CrossRefGoogle Scholar
  25. 25.
    Subha N, Myilsamy MMM, Reddy NL, Shankar MV, Neppolian B, Murugesan V (2017) Colloid Surf A Physicochem Engin Aspec 522:193–206CrossRefGoogle Scholar
  26. 26.
    Wang X, Zhang S, Peng B, Wang H, Yu H, Peng F (2016) Mater Lett 165:37–40CrossRefGoogle Scholar
  27. 27.
    Eskandarloo H, Hashempour M, Vicenzo A, Franz S, Badiei A, Behnajady MA, Bestetti M (2016) Appl Catal B Environ 185:119–132CrossRefGoogle Scholar
  28. 28.
    Alitabar M (2017) Yoozbashizadeh. H New J Chem 17:1182–1186Google Scholar
  29. 29.
    Nischk M, Mazierski P, Wei Z, Siuzdak K, Kouame NA, Kowalska E, Remita H, Zaleska-Medynska A (2016) Appl Surf Sci 387:89–102CrossRefGoogle Scholar
  30. 30.
    Tsiourvas ATD, Arkas M, Diplas S, Mastrogianni E (2011) J Mater Sci Mater Med 22(1):85–96CrossRefGoogle Scholar
  31. 31.
    Motahari F, Mozdianfard MR, Salavati-Niasari M (2015) Proc Saf Environ Protec 93:282–292CrossRefGoogle Scholar
  32. 32.
    Kemary M, Nagy N, El-Mehasseb I (2013) Material Sci Semiconduc Proc16, pp 1747–1752Google Scholar
  33. 33.
    Kim DH, Lee KS, Kim YS, Chung YC, Kim SJ (2006) J Am Ceram Soc 89:515–518CrossRefGoogle Scholar
  34. 34.
    Mengyao Wu TD, Ye C, Wen Q, Yu W, Xin H (2016) Desalin Water Treat 57:116–125Google Scholar
  35. 35.
    Georgieva J, Valova E, Armyanov S, Tatchev D, Sotiropoulos S, Avramova I, Dimitrova N, Hubin A, Steenhaut O (2017) Appl Surf Sci 413:284–291CrossRefGoogle Scholar
  36. 36.
    Dewei C, Adnan Y, Sean L (2012) J Phys D Appl Phys 45:355–366Google Scholar
  37. 37.
    Yan N, Zhu Z, Zhang J, Zhao Z, Liu Q (2012) Mater Res Bull 47(8):1869–1873CrossRefGoogle Scholar
  38. 38.
    Diwald O, Thompson L, EdG G, Walck SD, Yates T (2004) J Phys Chem B 108(1):52–57CrossRefGoogle Scholar
  39. 39.
    How GTS, Pandikumar A, Ming HN, Ngee LH (2014) Sci Rep 4:44–50Google Scholar
  40. 40.
    Ali H, Ismail N, Mekewi M, Hengazy AC (2015) J Solid State Electrochem 19:3019–3026CrossRefGoogle Scholar
  41. 41.
    Liu S, Li Q, Hou C, Feng X, Guan Z (2013) J Alloys Compd 575:128–136CrossRefGoogle Scholar
  42. 42.
    Tryba B, Orlikowski J, Wróbel RJ, Przepiórski J, Morawski AW (2015) J Mater Eng Perform 24(3):1243–1252CrossRefGoogle Scholar
  43. 43.
    Marschall R, Wang L (2014) Catal Today 225:111–135CrossRefGoogle Scholar
  44. 44.
    Devi LG, Kavitha R (2013) Appl Catal B Environ 140–141:559–587CrossRefGoogle Scholar
  45. 45.
    Matsumoto Y (1996) J Solid State Chemist 126:227–234CrossRefGoogle Scholar
  46. 46.
    Vafaei M, Mohammadi MR (2017) New J Chem 41(2017):14516–14527CrossRefGoogle Scholar
  47. 47.
    Kang Q, Cao J, Zhang Y, Liu L, Xu H, Ye J (2014) J Mater Chem A 1:5766–5774CrossRefGoogle Scholar
  48. 48.
    Dong Z, Ding D, Li T, Ning C (2018) Appl Surf Sci 443:321–328CrossRefGoogle Scholar
  49. 49.
    Wang Q, Jiang H, Zang S, Li J, Wang Q (2014) J Alloys Compd 586:411–419CrossRefGoogle Scholar
  50. 50.
    Adyani SM, Ghorbani M (2018) J Rare Earth 36(1):72–85CrossRefGoogle Scholar
  51. 51.
    Kuyumcu ÖK, Boz İ (2015) J Photochem Photobiol A Chem 301:32–39CrossRefGoogle Scholar
  52. 52.
    Díaz-Real JA, Ortiz-Ortega E, Gurrola MP, Ledesma-Garcia J, Arriaga LG (2016) Electrochim Acta 206:388–399CrossRefGoogle Scholar
  53. 53.
    Cheng Z, Gu Z, Chen J, Yu J, Zhou L (2016) J Environ Sci 46:203–213CrossRefGoogle Scholar
  54. 54.
    Bashiri R, Mohamed NM, Kait CF, Sufian S, Khatani M, Hanaei H (2016) Proced Engin 148:151–157CrossRefGoogle Scholar
  55. 55.
    Liu D, Fernández Y, Ola O, Mackintosh S, Maroto-Valer M, Parlett CMA, Lee AF, Wu JCS (2012) Catal Commun 25:78–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations