Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 27–32 | Cite as

CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage

  • Qiyao Yu
  • Jun Hu
  • Chang Qian
  • Yunzhi Gao
  • Wei (Alex) Wang
  • Geping Yin
Original Paper
  • 136 Downloads

Abstract

Potassium-ion batteries (KIBs) are attracting tremendous attention due to the abundant potassium resources and their low price and high safety. However, the main problem faced by KIBs is the lack of high-capacity and high-stability materials for the intercalation/deintercalation of large-sized K ions. Graphite, alloying-dealloying materials, transition metal chalcogenides, etc. have been reported as KIBs anodes; however, neither the capacity nor the stability is satisfactory. In this work, CoS/N-doped carbon core/shell nanocrystals (CSNCs) were synthesized as a superior anode for boosting the performance in the aspects of capacity, rate performance, and cycling stability. This CSNCs feature with small-sized CoS of 20–30 nm as the core and N-doped amorphous carbon as the shell. The small-sized particles can buffer the volume change due to the reduction of stress in particle dimensions after the intercalation of alkali ions. The flexible carbon shell can overcome the agglomeration of small particles and meanwhile confine the active CoS particles in case of crack and pulverization after large volume expansion. As a consequence, the CSNCs exhibit a high capacity of 303 mAh g−1 at the current density of 0.2 A g−1 after 150 cycles.

Keywords

Cobalt sulfide N-doped carbon Potassium-ion batteries Anode 

Notes

Funding information

This work is financially supported by the National Natural Science Foundation of China (21373072) and the China Postdoctoral Science Foundation (2016M600013).

References

  1. 1.
    Tarascon JM (2010) Is lithium the new gold? Nat Chem 2(6):510CrossRefGoogle Scholar
  2. 2.
    Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):324–328CrossRefGoogle Scholar
  3. 3.
    Wang W, Hu L, Ge J, Hu Z, Sun H, Sun H, Zhang H, Zhu H, Jiao S (2014) In situ self-assembled FeWO4/graphene mesoporous composites for Li-ion and Na-ion batteries. Chem Mater 26(12):3721–3730CrossRefGoogle Scholar
  4. 4.
    Wang F, Fan X, Gao T, Sun W, Ma Z, Yang C, Han F, Xu K, Wang C (2017) High-voltage aqueous magnesium ion batteries. ACS Central Sci 3(10):1121–1128CrossRefGoogle Scholar
  5. 5.
    Zhao J, Yang J, Sun P, Xu Y (2018) Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries. Electrochem Commun 86:34–37CrossRefGoogle Scholar
  6. 6.
    Pramudita JC, Sehrawat D, Goonetilleke D, Sharma N (2017) An initial review of the status of electrode materials for potassium-ion batteries. Adv Energy Mater 7(24):1602911CrossRefGoogle Scholar
  7. 7.
    Wang W, Zhou J, Wang Z, Zhao L, Li P, Yang Y, Yang C, Huang X, Guo S (2017) Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv Energy Mater 8:1701648CrossRefGoogle Scholar
  8. 8.
    Zhang W, Mao J, Li S, Chen Z, Guo Z (2017) Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc 139(9):3316–3319CrossRefGoogle Scholar
  9. 9.
    Komaba S, Hasegawa T, Dahbi M, Kubota K (2015) Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 60:172–175CrossRefGoogle Scholar
  10. 10.
    Luo W, Wan J, Ozdemir B, Bao W, Chen Y, Dai J, Lin H, Xu Y, Gu F, Barone V, Hu L (2015) Potassium ion batteries with graphitic materials. Nano Lett 15(11):7671–7677CrossRefGoogle Scholar
  11. 11.
    Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137(36):11566–11569CrossRefGoogle Scholar
  12. 12.
    Sultana I, Rahman MM, Chen Y, Glushenkov AM (2018) Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater 28(5):1703857CrossRefGoogle Scholar
  13. 13.
    Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM (2017) High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A 5(45):23506–23512CrossRefGoogle Scholar
  14. 14.
    Sultana I, Ramireddy T, Rahman MM, Chen Y (2016) Tin-based composite anodes for potassium-ion batteries. Chem Commun 52(59):9279–9282CrossRefGoogle Scholar
  15. 15.
    McCulloch WD, Ren X, Yu M, Huang Z, Wu Y (2015) Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Interfaces 7(47):26158–26166CrossRefGoogle Scholar
  16. 16.
    Gao H, Zhou T, Zheng Y, Zhang Q, Liu Y, Chen J, Liu H, Guo Z (2017) CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv Funct Mater 27(43):1702634CrossRefGoogle Scholar
  17. 17.
    Lakshmi V, Chen Y, Mikhaylov AA, Medvedev AG, Sultana I, Rahman MM, Lev O, Prikhodchenko PV, Glushenkov AM (2017) Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem Commun 53(59):8272–8275CrossRefGoogle Scholar
  18. 18.
    Lu Y, Chen J (2017) Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance. Sci China Chem 60(12):1533–1539CrossRefGoogle Scholar
  19. 19.
    Yu XY, Hu H, Wang Y, Chen H, Lou XWD (2015) Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew Chem Int Ed 54(25):7395–7398CrossRefGoogle Scholar
  20. 20.
    Liang J, Yu XY, Zhou H, Wu HB, Ding S, Lou XWD (2014) Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew Chem Int Ed 53(47):12803–12807CrossRefGoogle Scholar
  21. 21.
    Besenhard J, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68(1):87–90CrossRefGoogle Scholar
  22. 22.
    Hong R, Li J, Chen L, Liu D, Li H, Zheng Y, Ding J (2009) Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol 189(3):426–432CrossRefGoogle Scholar
  23. 23.
    Chen M, Wang W, Liang X, Gong S, Liu J, Wang Q, Guo S, Yang H (2018) Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv Energy Mater 1800171Google Scholar
  24. 24.
    Barber M, Connor J, Derrick L, Hall M, Hillier I (1973) High energy photoelectron spectroscopy of transition metal complexes. J Chem Soc 69:559–562Google Scholar
  25. 25.
    Liu Q, Zhang J (2013) A general and controllable synthesis of ComSn (Co9S8, Co3S4, and Co1-xS) hierarchical microspheres with homogeneous phases. CrystEngComm 15(25):5087–5092CrossRefGoogle Scholar
  26. 26.
    Kung CW, Chen HW, Lin CY, Huang KC, Vittal R, Ho KC (2012) CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6(8):7016–7025CrossRefGoogle Scholar
  27. 27.
    Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25(15):2219–2223CrossRefGoogle Scholar
  28. 28.
    Li Y, Zhou Z, Wang L (2008) CNx nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials. J Chem Phys 129(10):104703CrossRefGoogle Scholar
  29. 29.
    Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6):4720–4728CrossRefGoogle Scholar
  30. 30.
    Yang J, Ju Z, Jiang Y, Xing Z, Xi B, Feng J, Xiong S (2018) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30(4):1700104CrossRefGoogle Scholar
  31. 31.
    Cao L, Xu F, Liang YY, Li HL (2004) Preparation of the novel nanocomposite Co (OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv Mater 16(20):1853–1857CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Functional Material ResearchCentral Iron and Steel Research InstituteBeijingChina
  3. 3.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations