Skip to main content
Log in

Microwave-assisted hydrothermal synthesis and electrochemical studies of α- and h-MoO3

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Two modifications of molybdenum trioxide with orthorhombic (α-MoO3) and hexagonal (h-MoO3) crystal structure have been synthesized by a microwave-assisted hydrothermal method, facilitated by formic acid. Characterization by means of X-ray diffraction, scanning electron microscopy, specific surface analysis, and Fourier-transform infrared, Raman, and UV-Vis spectroscopy reveals phase-pure crystalline powder samples of hexagonal h-MoO3 microrods and of α-MoO3 nanobelt bundles, respectively. The electrochemical properties of the MoO3 compounds, studied by cyclic voltammetry and galvanostatic cycling vs. Li/Li+, strongly depend on the structure and the applied potential range. In the range of 1.5–3.5 V, Li+-ions can be reversibly intercalated into the α-MoO3 nanobelts. Utilizing the material in this way as intercalation cathode material yields an initial discharge capacity of 295 mA h g−1 at 100 mA g−1 and comparably moderate capacity fading of 25% between cycles 20 and 100. Extending the potential range to 0.01–3.0 V induces the conversion reaction to Mo, which for both modifications yields high initial capacities of around 1500 mA h g−1 but is associated with much stronger capacity fading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bai H, Yi W, Li J, Xi G, Li Y, Yang H, Liu J (2016) Direct growth of defect-rich MoO(3−x) ultrathin nanobelts for efficiently catalyzed conversion of isopropyl alcohol to propylene under visible light. J Mater Chem A 4(5):1566–1571

    Article  CAS  Google Scholar 

  2. Zheng Q, Huang J, Cao S, Gao H (2015) A flexible ultraviolet photodetector based on single crystalline MoO3 nanosheets. J Mater Chem C 3(28):7469–7475

    Article  CAS  Google Scholar 

  3. Yang S, Liu Y, Chen W, Jin W, Zhou J, Zhang H, Zakharova GS (2016) High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens Actuators B: Chem 226:478–485

    Article  CAS  Google Scholar 

  4. Wang F, Xiao S, Hou Y, Hu C, Liu L, Wu Y (2013) Electrode materials for aqueous asymmetric supercapacitors. RSC Adv 3(32):13059–13084

    Article  CAS  Google Scholar 

  5. Lunk H-J, Hartl H (2017) Discovery, properties and applications of molybdenum and its compounds. ChemTexts 3(3):13

    Article  Google Scholar 

  6. Olenkova IP, Plyasova LM, Kirik SD (1981) Crystal structure of “hexagonal” MoO3. React Kinet Catal Lett 16(1):81–85

    Article  CAS  Google Scholar 

  7. Guo J, Zavalij P, Whittingham MS (1995) Metastable hexagonal molybdates: hydrothermal preparation, structure, and reactivity. J Solid State Chem 117(2):323–332

    Article  CAS  Google Scholar 

  8. Zakharova GS, Volkov VL, Täschner C, Hellmann I, Klingeler R, Leonhardt A, Büchner B (2011) Synthesis, characterization and magnetic properties of hexagonal (VO)0.09V0.18Mo0.82O3·0.54H2O microrods. Mater Lett 65(3):579–582

    Article  CAS  Google Scholar 

  9. Liu Y, Yang S, Lu Y, Podval’naya NV, Chen W, Zakharova GS (2015) Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol. Appl Surf Sci 359:114–119

    Article  CAS  Google Scholar 

  10. Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44(8):2376–2404

    Article  CAS  Google Scholar 

  11. Huang J, Yan J, Li J, Cao L, Xu Z, Wu J, Zhou L, Luo Y (2016) Assembled-sheets-like MoO3 anodes with excellent electrochemical performance in Li-ion battery. J Alloys Compd 688:588–595

    Article  CAS  Google Scholar 

  12. Nadimicherla R, Zha R, Wei L, Guo X (2016) Single crystalline flowerlike α-MoO3 nanorods and their application as anode material for lithium-ion batteries. J Alloys Compd 687:79–86

    Article  CAS  Google Scholar 

  13. Gao B, Fan H, Zhang X (2012) Hydrothermal synthesis of single crystal MoO3 nanobelts and their electrochemical properties as cathode electrode materials for rechargeable lithium batteries. J Phys Chem Solids 73(3):423–429

    Article  CAS  Google Scholar 

  14. Yang Q-D, Xue H-T, Xia-Yang GZ, Cheng Y, Tsang S-W, Lee C-S (2015) Low temperature sonochemical synthesis of morphology variable MoO3 nanostructures for performance enhanced lithium ion battery applications. Electrochim Acta 185:83–89

    Article  CAS  Google Scholar 

  15. Zhou J, Lin N, Wang L, Zhang K, Zhu Y, Qian Y (2015) Synthesis of hexagonal MoO3 nanorods and a study of their electrochemical performance as anode materials for lithium-ion batteries. J Mater Chem A 3(14):7463–7468

    Article  CAS  Google Scholar 

  16. Song J, Wang X, Ni X, Zheng H, Zhang Z, Ji M, Shen T, Wang X (2005) Preparation of hexagonal-MoO3 and electrochemical properties of lithium intercalation into the oxide. Mater Res Bull 40(10):1751–1756

    Article  CAS  Google Scholar 

  17. Tang Q, Wang L, Zhu K, Shan Z, Qin X (2013) Synthesis and electrochemical properties of H-MoO3/graphene composite. Mater Lett 100:127–129

    Article  CAS  Google Scholar 

  18. Chithambararaj A, Bose AC (2011) Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. J Alloys Compd 509(31):8105–8110

    Article  CAS  Google Scholar 

  19. Phuruangrat A, Ham DJ, Thongtem S, Lee JS (2009) Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction. Electrochem Commun 11(9):1740–1743

    Article  CAS  Google Scholar 

  20. Bai S, Chen S, Chen L, Zhang K, Luo R, Li D, Liu CC (2012) Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties. Sens Actuators B: Chem 174:51–58

    Article  CAS  Google Scholar 

  21. Jittiarporn P, Sikong L, Kooptarnond K, Taweepreda W (2014) Effects of precipitation temperature on the photochromic properties of h-MoO3. Ceram Int 40(8):13487–13495

    Article  CAS  Google Scholar 

  22. Parviz D, Kazemeini M, Rashidi AM, Jafari Jozani K (2010) Synthesis and characterization of MoO3 nanostructures by solution combustion method employing morphology and size control. J Nanopart Res 12(4):1509–1521

    Article  CAS  Google Scholar 

  23. Boudaoud L, Benramdane N, Desfeux R, Khelifa B, Mathieu C (2006) Structural and optical properties of MoO3 and V2O5 thin films prepared by spray pyrolysis. Catal Today 113(3-4):230–234

    Article  CAS  Google Scholar 

  24. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8):1358–1374

    Article  CAS  Google Scholar 

  25. Neef C, Jähne C, Meyer H-P, Klingeler R (2013) Morphology and agglomeration control of LiMnPO4 micro- and nanocrystals. Langmuir 29(25):8054–8060

    Article  CAS  Google Scholar 

  26. Cho S, Jung S-H, Lee K-H (2008) Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J Phys Chem C 112(33):12769–12776

    Article  CAS  Google Scholar 

  27. Hu X, Yu JC (2008) Continuous aspect-ratio tuning and fine shape control of monodisperse α-Fe2O3 nanocrystals by a programmed microwave–hydrothermal method. Adv Funct Mater 18(6):880–887

    Article  CAS  Google Scholar 

  28. Park S-E, Chang J-S, Hwang YK, Kim DS, Jhung SH, Hwang JS (2004) Supramolecular interactions and morphology control in microwave synthesis of nanoporous materials. Catal Surv Jpn 8(2):91–110

    Article  CAS  Google Scholar 

  29. Jähne C, Neef C, Koo C, Meyer H-P, Klingeler R (2013) A new LiCoPO4 polymorph via low temperature synthesis. J Mater Chem A 1(8):2856

    Article  Google Scholar 

  30. Popa AI, Vavilova E, Täschner C, Kataev V, Büchner B, Klingeler R (2011) Electrochemical behavior and magnetic properties of vanadium oxide nanotubes. J Phys Chem C 115(13):5265–5270

    Article  CAS  Google Scholar 

  31. Kihlborg L (1963) Least squares refinement of crystal structure of molybdenum trioxide. Arkiv Kemi 21:357

    CAS  Google Scholar 

  32. Zakharova GS, Täschner C, Volkov VL, Hellmann I, Klingeler R, Leonhardt A, Büchner B (2007) MoO3 − δ nanorods: synthesis, characterization and magnetic properties. Solid State Sci 9(11):1028–1032

    Article  CAS  Google Scholar 

  33. Chithambararaj A, Chandra Bose A (2014) Role of synthesis variables on controlled nucleation and growth of hexagonal molybdenum oxide nanocrystals: investigation on thermal and optical properties. CrystEngComm 16(27):6175–6186

    Article  CAS  Google Scholar 

  34. Song J, Ni X, Gao L, Zheng H (2007) Synthesis of metastable h-MoO3 by simple chemical precipitation. Mater Chem Phys 102(2-3):245–248

    Article  CAS  Google Scholar 

  35. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  36. Phuruangrat A, Chen JS, Lou XW, Yayapao O, Thongtem S, Thongtem T (2012) Hydrothermal synthesis and electrochemical properties of α-MoO3 nanobelts used as cathode materials for Li-ion batteries. Appl Phys A Mater Sci Process 107(1):249–254

    Article  CAS  Google Scholar 

  37. Pan W, Tian R, Jin H, Guo Y, Zhang L, Wu X, Zhang L, Han Z, Liu G, Li J, Rao G, Wang H, Chu W (2010) Structure, optical, and catalytic properties of novel hexagonal metastable h-MoO3 nano- and microrods synthesized with modified liquid-phase processes. Chem Mater 22(22):6202–6208

    Article  CAS  Google Scholar 

  38. Zhang CC, Zheng L, Zhang ZM, Dai RC, Wang ZP, Zhang JW, Ding ZJ (2011) Raman studies of hexagonal MoO3 at high pressure. Phys Status Solidi B 248(5):1119–1122

    Article  CAS  Google Scholar 

  39. Tauc J (1966) The optical properties of solids. Academic, Waltham

    Google Scholar 

  40. Hu H, Deng C, Xu J, Zhang K, Sun M (2015) Metastable h-MoO3 and stable α-MoO3 microstructures: controllable synthesis, growth mechanism and their enhanced photocatalytic activity. J Exp Nanosci 10(17):1336–1346

    Article  CAS  Google Scholar 

  41. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100(31):13226–13239

    Article  CAS  Google Scholar 

  42. Dickens PG, Reynolds GJ (1981) Transport and equilibrium properties of some oxide insertion compounds. Solid State Ionics 5:331–334

    Article  CAS  Google Scholar 

  43. Besenhard J, Heydecke J, Fritz H (1982) Characteristics of molybdenum oxide and chromium oxide cathodes in primary and secondary organic electrolyte lithium batteries I: morphology, structure and their changes during discharge and cycling. Solid State Ionics 6(3):215–224

    Article  CAS  Google Scholar 

  44. Besenhard JO, Heydecke J, Wudy E, Fritz HP, Foag W (1983) Characteristics of molybdenum oxide and chromium oxide cathodes in primary and secondary organic electrolyte lithium batteries II: transport properties. Solid State Ionics 8(1):61–71

    Article  CAS  Google Scholar 

  45. Spahr ME, Novák P, Haas O, Nesper R (1995) Electrochemical insertion of lithium, sodium, and magnesium in molybdenum (VI) oxide. J Power Sources 54(2):346–351

    Article  CAS  Google Scholar 

  46. Tsumura T, Inagaki M (1997) Lithium insertion/extraction reaction on crystalline MoO3. Solid State Ionics 104(3-4):183–189

    Article  CAS  Google Scholar 

  47. Sen UK, Mitra S (2012) Electrochemical activity of α-MoO3 nano-belts as lithium-ion battery cathode. RSC Adv 2(29):11123

    Article  CAS  Google Scholar 

  48. Li W, Cheng F, Tao Z, Chen J (2006) Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods. J Phys Chem B 110(1):119–124

    Article  CAS  Google Scholar 

  49. Wang Z, Madhavi S, Lou XW (2012) Ultralong α-MoO3 nanobelts: synthesis and effect of binder choice on their lithium storage properties. J Phys Chem C 116(23):12508–12513

    Article  CAS  Google Scholar 

  50. Yuan Z, Si L, Wei D, Hu L, Zhu Y, Li X, Qian Y (2014) Vacuum topotactic conversion route to mesoporous orthorhombic MoO3 nanowire bundles with enhanced electrochemical performance. J Phys Chem C 118(10):5091–5101

    Article  CAS  Google Scholar 

  51. Xue X-Y, Chen Z-H, Xing L-L, Yuan S, Chen Y-J (2011) SnO2/alpha-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chem Commun 47(18):5205–5207

    Article  CAS  Google Scholar 

  52. Dong Y, Xu X, Li S, Han C, Zhao K, Zhang L, Niu C, Huang Z, Mai L (2015) Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy 15:145–152

    Article  Google Scholar 

  53. Kim H-S, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16(4):454–460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GZ acknowledges support by the UD RAS project No. 18-10-3-32. GZ acknowledges financial support by the Excellence Initiative of the German Federal Government and States. AO and RK are grateful to the CleanTech-Initiative of the Baden-Württemberg-Stiftung (Project CT-3 Nanostorage). Support by the Deutsche Forschungsgemeinschaft via project KL1824/12-1 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ottmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, G.S., Schmidt, C., Ottmann, A. et al. Microwave-assisted hydrothermal synthesis and electrochemical studies of α- and h-MoO3. J Solid State Electrochem 22, 3651–3661 (2018). https://doi.org/10.1007/s10008-018-4073-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4073-1

Keywords

Navigation