Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3607–3619 | Cite as

Synthesis, characterization, and preparation of nickel nanoparticles decorated electrochemically reduced graphene oxide modified electrode for electrochemical sensing of diclofenac

  • Birhanu Mekassa
  • Priscilla G. L. Baker
  • Bhagwan Singh Chandravanshi
  • Merid Tessema
Original Paper
  • 122 Downloads

Abstract

In this work, nickel nanoparticles (NiNPs) and graphene oxide (GO) were synthesized and characterized independently using spectroscopic and microscopic characterization techniques. Then, a new glassy carbon electrode modified with electrochemically reduced graphene oxide decorated with nickel nanoparticles (NiNPs/ERGO/GCE) was constructed by electrodeposition. The novel platform, NiNPs/ERGO/GCE, was characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV). SEM analysis clearly revealed efficient incorporation of NiNPs into the graphene sheets on the surface of the electrode. The prepared platform was used for the determination of diclofenac (DIC). A significant enhancement in the peak current response for DIC was observed at the composite modified electrode compared to the unmodified electrode. The NiNPs/ERGO composite modified electrode demonstrated excellent square wave voltammetric response towards the determination of DIC in the working range of 0.250–125 μM. The limit of detection (LOD) and limit of quantification (LOQ) of the proposed method were found to be 0.09 and 0.30 μM, respectively. The sensor was validated successfully for real sample analysis in pharmaceutical formulation and human urine samples with good recovery results. The proposed sensor also displayed good repeatability, reproducibility, long-term stability, and selectivity towards potential interferents. Hence, it is a promising material for electrochemical sensing of diclofenac and other similar drugs and biologically active compounds in real samples.

Keywords

Nickel nanoparticles Electrochemically reduced graphene oxide Composite modified electrode Square wave voltammetry Diclofenac 

Notes

Acknowledgments

The authors gratefully acknowledge the University of the Western Cape, Department of Chemistry, for supporting this work.

Supplementary material

10008_2018_4071_MOESM1_ESM.docx (77 kb)
ESM 1 (DOCX 77 kb)

References

  1. 1.
    Goyal RN, Chatterjee S, Rana ARS (2010) The effect of modifying an edge-plane pyrolytic graphite electrode with single-wall carbon nanotubes on its use for sensing diclofenac. Carbon 48(14):4136–4144CrossRefGoogle Scholar
  2. 2.
    Ensafi AA, Izadi M, Karimi-Maleh H (2013) Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 19(1):137–144CrossRefGoogle Scholar
  3. 3.
    Afkhami A, Bahiraei A, Madrakian T (2016) Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater Sci Eng C 59:168–176CrossRefGoogle Scholar
  4. 4.
    Aguilar-Lira GY, Álvarez-Romero GA, Zamora-Suárez A, Palomar-Pardavé M, Rojas-Hernández A, Rodríguez-Ávila JA, Páez-Hernández ME (2017) New insights on diclofenac electrochemistry using graphite as working electrode. J Electroanal Chem 794:182–188CrossRefGoogle Scholar
  5. 5.
    Chethana BK, Basavanna S, Naik YA (2012) Voltammetric determination of diclofenac sodium using tyrosine modified carbon paste electrode. Ind Eng Chem Res 51(31):10287–10295CrossRefGoogle Scholar
  6. 6.
    Goyal RN, Chatterjee S, Agrawal B (2010) Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sensors Actuators B 145(2):743–748CrossRefGoogle Scholar
  7. 7.
    Karuppiah C, Cheemalapati S, Chen SM, Palanisamy S (2015) Carboxyl-functionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics 21(1):231–238CrossRefGoogle Scholar
  8. 8.
    Shalauddin M, Akhter S, Bagheri S, Karim MSA, Kadri NA, Basirun WJ (2017) Immobilized copper ions on MWCNTS-Chitosan thin film: enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution. Int J Hydrog Energy 42(31):19951–19960CrossRefGoogle Scholar
  9. 9.
    Motoc S, Manea F, Iacob A, Martinez-Joaristi A, Pop A, Schoonman J (2016) Electrochemical selective and simultaneous detection of diclofenac and ibuprofen in aqueous solution using HKUST-1 metal-organic framework-carbon nanofiber composite electrode. Sensors 16(10):1719–1730CrossRefGoogle Scholar
  10. 10.
    Hassan KM, Hathoot AA, Ashour WFD, Abdel-Azzem M (2015) Electrochemical and analytical applications for NADH detection at glassy carbon electrode modified with nickel nanoparticles dispersed on poly 1,5-diaminonaphthalene. J Solid State Electrochem 19(4):1063–1072CrossRefGoogle Scholar
  11. 11.
    Guo M, Yu Y, Hu J (2017) Nickel nanoparticles for the efficient electrocatalytic oxidation of methanol in an alkaline medium. Electrocatalysis 8(4):392–398CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Xiao X, Sun Y, Shi Y, Dai H, Ni P, Hu J, Li Z, Song Y, Wang L (2013) Electrochemical deposition of nickel nanoparticles on reduced graphene oxide film for nonenzymatic glucose sensing. Electroanalysis 25(4):959–966CrossRefGoogle Scholar
  13. 13.
    Ji Z, Wang Y, Yang J, Shen X, Yu Q, Kong L, Zhou H (2016) Reduced graphene oxide uniformly decorated with Co nanoparticles: facile synthesis, magnetic and catalytic properties. RSC Adv 6(109):107709–107716CrossRefGoogle Scholar
  14. 14.
    Long F, Zhang Z, Wang J, Yan L, Zhou B (2015) Cobalt-nickel bimetallic nanoparticles decorated graphene sensitized imprinted electrochemical sensor for determination of octylphenol. Electrochim Acta 168:337–345CrossRefGoogle Scholar
  15. 15.
    Wu SH, Chen DH (2003) Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J Colloid Interface Sci 259(2):282–286CrossRefPubMedGoogle Scholar
  16. 16.
    Hummers WS, Offema RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  17. 17.
    Singh MK, Agarwal A, Gopal R, Swarnkar RK, Kotnala RK (2011) Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. J Mater Chem 21(30):11074–11079CrossRefGoogle Scholar
  18. 18.
    Ogino I, Yokoyama Y, Iwamura S, Mukai SR (2014) Exfoliation of graphite oxide in water without sonication: bridging length scales from nanosheets to macroscopic materials. Chem Mater 26(10):3334–3339CrossRefGoogle Scholar
  19. 19.
    Emiru TF, Ayele DW (2017) Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt J Basic and Appl Sci 4:74–79Google Scholar
  20. 20.
    Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46(7):1112–1114CrossRefGoogle Scholar
  21. 21.
    Drewniak S, Muzyka R, Stolarczyk A, Pustelny T, Kotyczka-Moranska M, Setkiewicz M (2016) Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1):103–118CrossRefGoogle Scholar
  22. 22.
    Xu C, Shi X, Ji A, Shi L, Zhou C, Cu Y (2015) Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS One 10:144842–144856Google Scholar
  23. 23.
    Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5(1):10160–10166CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ghanbari K, Hajheidari N (2015) Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using silver nanoparticles deposited on polypyrrole nanofibers. J Polym Res 22(8):152–160CrossRefGoogle Scholar
  25. 25.
    Dahal A, Batzill M (2014) Graphene–nickel interfaces: a review. Nanoscale 6(5):2548–2562CrossRefPubMedGoogle Scholar
  26. 26.
    Maringa A, Mugadza T, Antunes E, Nyokong T (2013) Characterization and electrocatalytic behavior of glassy carbon electrode modified with nickel nanoparticles towards amitrole detection. J Electroanal Chem 700:86–92CrossRefGoogle Scholar
  27. 27.
    Li X, Zhong A, Wei S, Luo X, Liang Y, Zhu Q (2015) Polyelectrolyte functionalized gold nanoparticles-reduced graphene oxide nanohybrid for electrochemical determination of aminophenol isomers. Electrochim Acta 164:203–210CrossRefGoogle Scholar
  28. 28.
    Phelane L, Muya FN, Richards HL, Baker PGL, Iwuoha EI (2014) Polysulfone nanocomposite membranes with improved hydrophilicity. Electrochim Acta 128:326–335CrossRefGoogle Scholar
  29. 29.
    Liu W, Tanna VA, Yavitt BM, Dimitrakopoulos C, Winter HH (2015) Fast production of high-quality graphene via sequential liquid exfoliation. Appl Mater Interfaces 7(49):27027–27030CrossRefGoogle Scholar
  30. 30.
    Liu L, An M, Yang P, Zhang J (2015) Superior cycle performance and high reversible capacity of SnO/graphene composite as an anode material for lithium-ion batteries. Sci Rep 5:9095–9064CrossRefGoogle Scholar
  31. 31.
    Ji Z, Wang Y, Yu Q, Shen X, Li N, Ma H, Yang J, Wang J (2017) One-step thermal synthesis of nickel nanoparticles modified graphene sheets for enzymeless glucose detection. J Colloid Interface Sci 506:678–684CrossRefPubMedGoogle Scholar
  32. 32.
    Lin Q, Wei Y, Liu W, Yu Y, Hu J (2017) Electrocatalytic oxidation of ethylene glycol and glycerol on nickel ion implanted-modified indium tin oxide electrode. Int J Hydrog Energy 42(2):1403–1411CrossRefGoogle Scholar
  33. 33.
    Chekin F, Bagheri S, Arof AK, Hamid SBA (2012) Preparation and characterization of Ni (II)/polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation. J Solid State Electrochem 16(10):3245–3251CrossRefGoogle Scholar
  34. 34.
    Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2008) Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electrochem 13:1171–1179CrossRefGoogle Scholar
  35. 35.
    Ojani R, Raoof JB, Norouzi B (2010) Performance of glucose electrooxidation on Ni–Co composition dispersed on the poly (isonicotinic acid) (SDS) film. J Solid State Electrochem 15:1139–1147CrossRefGoogle Scholar
  36. 36.
    Wang L, Tang Y, Wang L, Zhu H, Meng X, Chen Y, Sun Y, Yang XJ, Wan P (2014) Fast conversion of redox couple on Ni (OH)2/C nanocomposite electrode for high-performance nonenzymatic glucose sensor. J Solid State Electrochem 19:851–860CrossRefGoogle Scholar
  37. 37.
    Yi W, Yang D, Chen H, Liu P, Tan J, Li H (2013) A highly sensitive nonenzymatic glucose sensor based on nickel oxide–carbon nanotube hybrid nanobelts. J Solid State Electrochem 18:899–908CrossRefGoogle Scholar
  38. 38.
    Goodarzian M, Khalilzade MA, Karimi F, Gupta VK, Keyvanfard M, Bagheri H, Fouladgar M (2014) Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J Mol Liq 197:114–119CrossRefGoogle Scholar
  39. 39.
    Sarhangzadeh K, Khatami AA, Jabbari M, Bahari S (2013) Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J Appl Electrochem 43(12):1217–1224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Birhanu Mekassa
    • 1
  • Priscilla G. L. Baker
    • 2
  • Bhagwan Singh Chandravanshi
    • 1
  • Merid Tessema
    • 1
  1. 1.Department of Chemistry, College of Natural SciencesAddis Ababa UniversityAddis AbabaEthiopia
  2. 2.Department of ChemistryUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations