Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3475–3484 | Cite as

Novel proton-conductive nanochannel membranes with modified SiO2 nanospheres for direct methanol fuel cells

  • Hang Wang
  • Xiaojie Li
  • Xi feng
  • Ya Liu
  • Weimin Kang
  • Xianlin Xu
  • Xupin Zhuang
  • Bowen Cheng
Original Paper

Abstract

A novel approach is proposed to prepare a proton-conductive nanochannel membrane based on polyvinylidene difluoride (PVDF) porous membrane with modified SiO2 nanospheres. The hydrophilic PVDF porous membrane with a 450-nm inner pore size was chosen as the supporting structure. Pristine SiO2 with a uniform particle size of 95–110 nm was synthesized and functionalized with –NH2 and –COOH, respectively. Through-plane channels of porous membrane and arranged functional nanoparticles in pores could contribute to constituting efficient proton transfer channels. The characteristics such as morphology, thermal stability, water uptake, dimensional swelling, proton conductivity and methanol permeability as proton exchange membranes, of the SiO2 nanospheres, and the composite membrane were investigated. The formation of ionic channels in membrane enhanced the water uptakes and proton conduction abilities of the composite membranes. PVDF/Nafion/SiO2–NH2 exhibited superior proton conductivities (0.21 S cm−1) over other samples due to several proton sites and the acid–base pairs formed between –NH2 and –SO3H. Furthermore, all the composite membranes exhibited improved methanol resistance compared with Nafion. Therefore, such a design based on porous membrane provided feasibility for high-performance proton exchange membrane in fuel cell applications.

Keywords

Silica nanospheres Functionalization Porous membrane Proton exchange membrane 

Notes

Funding information

The author would like to thank the National Key Technology R&D Program (2016YFB0303300), the National Natural Science Foundation of China (51473121 and 51403155), the Science and Technology Plans of Tianjin (15JCYBJC47200, 16PTSYJC00110, and 17JCYBJC17200), the Tianjin Education Commission Research Project (2017KJ068), and Key Laboratory of Textile Fiber & Product (Wuhan Textile University), Ministry of Education for their financial supports.

References

  1. 1.
    Guo X, Zeng Y, Wang Z, Shao Z, Yi B (2016) Investigation of porous water transport plates used for the humidification of a membrane electrode assembly. J Power Sources 302:84–91CrossRefGoogle Scholar
  2. 2.
    Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35(17):9349–9384CrossRefGoogle Scholar
  3. 3.
    Xie Q, Li Y, Chen X, Hu J, Li L, Li H (2015) Composite proton exchange membranes based on phosphosilicate sol and sulfonated poly(ether ether ketone) for fuel cell applications. J Power Sources 282:489–497CrossRefGoogle Scholar
  4. 4.
    Muthumeenal A, Neelakandan S, Kanagaraj P, Nagendran A (2016) Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications. Renew Energy 86:922–929CrossRefGoogle Scholar
  5. 5.
    Wang L, Advani SG, Prasad AK (2013) PBI/Nafion/SiO2 hybrid membrane for high-temperature low-humidity fuel cell applications. Electrochim Acta 105:530–534CrossRefGoogle Scholar
  6. 6.
    Lee J, Kim N, Lee M, Lee S (2011) SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells. J Membr Sci 367(1-2):265–272CrossRefGoogle Scholar
  7. 7.
    Wang H, Li X, Zhuang X, Cheng B, Wang W, Kang W, Shi L, Li H (2017) Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells. J Power Sources 340:201–209CrossRefGoogle Scholar
  8. 8.
    Taghizadeh MT, Vatanparast M (2017) Nafion/sulfonic acid functionalized SnO2/SiO2 nanocomposite for mitigation of membrane chemical degradation in PEM fuel cells. J Mater Sci Mater Electron 28:778–786CrossRefGoogle Scholar
  9. 9.
    Teng M, Li F, Zhang B, Taha AA (2011) Electrospun cyclodextrin-functionalized mesoporous polyvinyl alcohol/SiO2 nanofiber membranes as a highly efficient adsorbent for indigo carmine dye. Colloids Surf A Physicochem Eng Asp 385(1-3):229–234CrossRefGoogle Scholar
  10. 10.
    Ke C, Li X, Shen Q, Qu S, Shao Z, Yi B (2011) Investigation on sulfuric acid sulfonation of in-situ sol–gel derived Nafion/SiO2 composite membrane. Int J Hydrog Energy 36(5):3606–3613CrossRefGoogle Scholar
  11. 11.
    Lin Y, Yen C, Ma CM, Liao S, Lee C, Hsiao Y, Lin H (2017) High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes. J Power Sources 171:388–395CrossRefGoogle Scholar
  12. 12.
    Le Mong A, Kim D (2016) Porous proton exchange membranes based on sulfonated poly (arylene ether ketone)/polylactide block copolymers for enhanced proton conductivity and dimensional stability. Solid State Ionics 290:62–70CrossRefGoogle Scholar
  13. 13.
    Ma Q, Xia H, Zhang S, Qin D, Devaramani S, Shan D, Lu X (2016) Investigation of proton-driven amine functionalized tube array as ion responsive biomimetic nanochannels. RSC Adv 6(15):12249–12255CrossRefGoogle Scholar
  14. 14.
    Ossiander T, Heinzl C, Gleich S, Schönberger F, Völk P, Welsch M, Scheu C (2014) Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane. J Membr Sci 454:12–19CrossRefGoogle Scholar
  15. 15.
    Li H, Liu Y (2014) Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J Mater Chem A 2(11):3783–3793CrossRefGoogle Scholar
  16. 16.
    Yin Y, Xu T, He G, Jiang Z, Wu H (2015) Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol–gel process. J Power Sources 276:271–278CrossRefGoogle Scholar
  17. 17.
    Li T, Zhong G, Fu R, Yang Y (2010) Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell. J Membr Sci 354(1-2):189–197CrossRefGoogle Scholar
  18. 18.
    Wu H, Cao Y, Shen X, Li Z, Xu T, Jiang Z (2014) Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly (ether ether ketone) hybrid membranes for direct methanol fuel cells. J Membr Sci 463:134–144CrossRefGoogle Scholar
  19. 19.
    Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, Kaliaguine S (2004) Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J Membr Sci 229(1-2):95–106CrossRefGoogle Scholar
  20. 20.
    Liu H, Gong C, Wang J, Liu X, Liu H, Cheng F, Wang G, Zheng G, Qin C, Wen S (2016) Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydr Polym 136:1379–1385CrossRefPubMedGoogle Scholar
  21. 21.
    Ren J, Zhang S, Liu Y, Wang Y, Pang J, Wang Q, Wang G (2013) A novel crosslinking organic–inorganic hybrid proton exchange membrane based on sulfonated poly(arylene ether sulfone) with 4-amino-phenyl pendant group for fuel cell application. J Membr Sci 434:161–170CrossRefGoogle Scholar
  22. 22.
    Wang J, Zhang H, Yang X, Jiang S, Lv W, Jiang Z, Qiao SZ (2011) Enhanced water retention by using polymeric microcapsules to confer high proton conductivity on membranes at low humidity. Adv Funct Mater 21:971–978CrossRefGoogle Scholar
  23. 23.
    Lee C, Jo SM, Choi J, Baek K, Truong YB, Kyratzis IL, Shul Y (2013) SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J Mater Sci 48(10):3665–3671CrossRefGoogle Scholar
  24. 24.
    Lin C, Yang M, Wei H (2015) Amino-silica modified Nafion membrane for vanadium redox flow battery. J Power Sources 282:562–571CrossRefGoogle Scholar
  25. 25.
    Changkhamchom S, Sirivat A (2014) High proton conductivity ZSM-5/sulfonated poly(ether ketone ether sulfone) (S-PEKES) composite proton exchange membrane for using in direct methanol fuel cell. Solid State Ionics 263:161–166CrossRefGoogle Scholar
  26. 26.
    Chen Y, Thorn M, Christensen S, Versek C, Poe A, Hayward RC, Tuominen MT, Thayumanavan S (2010) Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers. Nat Chem 2(6):503–508CrossRefPubMedGoogle Scholar
  27. 27.
    Koivula R, Makkonen-Craig S, Harjula R, Paronen M (2012) Ion exchange properties of sulfonated polycarbonate and polyimide track etch membranes. React Funct Polym 72(1):92–97CrossRefGoogle Scholar
  28. 28.
    Yamada M, Honma I (2004) A biopolymer composite material as an anhydrous proton-conducting membrane. Angew Chem Int Ed 43(28):3688–3691CrossRefGoogle Scholar
  29. 29.
    Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrog Energy 34(16):6902–6916CrossRefGoogle Scholar
  30. 30.
    Park JW, Wycisk R, Pintauro PN (2015) Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells. J Membr Sci 490:103–112CrossRefGoogle Scholar
  31. 31.
    Farrukh A, Ashraf F, Kaltbeitzel A, Ling X, Wagner M, Duran H, Ghaffar A, Rehman H, Parekh S, Domke K, Yameen B (2015) Polymer brush functionalized SiO2 nanoparticle based Nafion nanocomposites: a novel avenue to low-humidity proton conducting membranes. Polym Chem 31:5782–5789CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Separation Membranes and Membrane ProcessesTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  2. 2.College of TextileTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  3. 3.Yanshan UniversityQinhuangdaoPeople’s Republic of China

Personalised recommendations