Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3343–3350 | Cite as

Crystalline structure, electrical conductivity, and thermal expansion of La0.8Sr0.2Ga1 − xCoxO3 − δ and its application in a limiting current oxygen sensor

  • Xiangnan Wang
  • Tao Liu
  • Jingkun Yu
  • Xiaofang Zhang
  • Hongbin Jin
  • Cheng Wang
  • Wenduo Ma
ORIGINAL ARTICLE
  • 63 Downloads

Abstract

La0.8Sr0.2Ga1 − xCoxO3 − δ (0.1 ≤ x ≤ 0.9, given the nomenclature LSGC1 to LSGC9, respectively), LSGC, was synthesized by solid state reaction method and its crystalline structure, electrical conductivity, and thermal expansion were characterized, respectively. A limiting current oxygen sensor was prepared with La0.8Sr0.2Ga0.8Mg0.2O3 − δ (LSGM) solid electrolyte and La0.8Sr0.2Ga0.1Co0.9O3 − δ (LSGC9) dense diffusion barrier. Influences of temperature (T), oxygen concentration (x(O2)), and thickness of dense diffusion barrier (L) on sensing characteristics of the limiting current oxygen sensor were investigated, respectively. The results show that LSGC belongs to perovskite structure and its electrical conductivity increases with increasing Co content x. Oxygen loss of LSGC3, LSGC5, and LSGC7 on the lattice occurs at high temperature and a transition from semiconductive to pseudo-metallic behavior was observed for LSGC3, LSGC5, LSGC7, and LSGC9. Thermal expansion coefficient (TEC) of LSGC increases to a maximum at LSGC7 and then decreases with increasing x in a temperature range of 300–1000 °C. The limiting current oxygen sensor exhibits excellent sensing characteristics. LogIL depends linearly on 1000/T, IL depends linearly on x(O2), and IL decreases with increasing L.

Keywords

Diffusion barrier TEC Solid electrolyte Limiting current oxygen sensor 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (51374055) and the Fundamental Research Funds for the Central Universities of China (N172506007).

References

  1. 1.
    Litzelman SJ, Rothschild A, Tuller HL (2005) The electrical properties and stability of SrTi0.65Fe0.35O3-δ thin films for automotive oxygen sensor applications. Sensors Actuator B Chem 108(1-2):231–237CrossRefGoogle Scholar
  2. 2.
    Yamazoe N (2005) Toward innovations of gas sensor technology. Sensors Actuator B Chem 108(1-2):2–14CrossRefGoogle Scholar
  3. 3.
    Riegel J, Neumann H, Wiedenmann HM (2002) Exhaust gas sensors for automotive emission control. Solid State Ionics 152–153:783–800CrossRefGoogle Scholar
  4. 4.
    Rink J, Meister N, Herbst F, Votsmeier M (2017) Oxygen storage in three-way-catalysts is an equilibrium controlled process: experimental investigation of the redox thermodynamics. Appl Catal B Environ 206:104–114CrossRefGoogle Scholar
  5. 5.
    Xia CY, Lu XC, Yan Y, Wang TZ, Zhang ZM (2011) Simulation of the transient response of limiting current oxygen sensor. Sensors Actuator B Chem 156(2):881–886CrossRefGoogle Scholar
  6. 6.
    Han JX, Zhou F, Bao JX, Wang XJ, Song XW (2013) A high performance limiting current oxygen sensor with Ce0.8Sm0.2O1.9 electrolyte and La0.8Sr0.2Co0.8Fe0.2O3 diffusion barrier. Electrochim Acta 108:763–768CrossRefGoogle Scholar
  7. 7.
    Maskell WC, Brett DJL, Brandon NP (2014) Thick-film amperometric zirconia oxygen sensors: influence of cobalt oxide as a sintering aid. Meas Sci Technol 25(6):065104CrossRefGoogle Scholar
  8. 8.
    Miruszewski T, Karczewski J, Bochentyn B, Jasinski P, Gazda M, Kusz B (2016) Determination of the ionic conductivity of Sr-doped lanthanum manganite by modified Hebb-Wagner technique. J Phys Chem Solids 91:163–169CrossRefGoogle Scholar
  9. 9.
    Liu T, Gao X, He BG, Yu JK (2016) A limiting current oxygen sensor based on LSGM as a solid electrolyte and LSGN (N=Fe, Co) as a dense diffusion barrier. J Mater Eng Perform 25(7):2943–2950CrossRefGoogle Scholar
  10. 10.
    Gao X, Liu T, Yu JK, Li L (2017) Limiting current oxygen sensor based on La0.8Sr0.2Ga0.8Mg0.2O3-δ as both dense diffusion barrier and solid electrolyte. Ceram Int 43(8):6329–6332CrossRefGoogle Scholar
  11. 11.
    Butz B (2009) Yttria-doped zirconia as solid electrolyte for fuel-cell applications. Karlsruhe: University of Karlsruhe (TH) PHD thesisGoogle Scholar
  12. 12.
    Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La1-xMxCo1-yFeyO3-δ (M=Sr, Ba, Ca). J Electrochem Soc 143(9):2722–2729CrossRefGoogle Scholar
  13. 13.
    Politova ED, Aleksandrovskii VV, Kaleva GM, Mosunov AV, Suvorkin SV, Zaitsev SV, Sung JS, Choo KY, Kim TH (2006) Mixed conducting perovskite-like ceramics on the base of lanthanum gallate. Solid State Ionics 177(19-25):1779–1783CrossRefGoogle Scholar
  14. 14.
    Garzon F, Raistrick I, Brosha E, Houlton R, Chung BW (1998) Dense diffusion barrier limiting current oxygen sensors. Sensors Actuator B Chem 50(2):125–130CrossRefGoogle Scholar
  15. 15.
    Wu YL, Wang L, Li FS, Zhao YQ (2008) Limiting current oxygen sensors with LSM as dense diffusion barrier. J Inorg Mater 368–372:263–264Google Scholar
  16. 16.
    Manfredi G, Lim J, Rosseel K, Van den Bosch J, Doneux T, Buess-Herman C, Aerts A (2015) Comparison of solid metal-metal oxide reference electrodes for potentiometric oxygen sensors in liquid lead-bismuth eutectic operating at low temperature ranges. Sensors Actuator B Chem 214:20–28CrossRefGoogle Scholar
  17. 17.
    Tsimekas G, Papastergiades E, Kiratzis NE (2017) Morphology and structure of ceramic thin films deposited by spray pyrolysis. J Solid State Sci Technol 6:553–560CrossRefGoogle Scholar
  18. 18.
    Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M (1996) Oxygen tracer diffusion coefficient of (La, Sr)MnOδ. Solid State Ionics 86–88:1197–1201CrossRefGoogle Scholar
  19. 19.
    Ishihara T, Shibayama T, Nishiguchi H, Takita Y (2001) Oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2-xNixO3 perovskite oxide and application for the electrolyte of solid oxide fuel cells. J Mater Sci 36(5):1125–1131CrossRefGoogle Scholar
  20. 20.
    Zhang XG, Ohara S, Okawa H, Maric R, Fukui T (2001) Interactions of a La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte with Fe2O3, Co2O3 and NiO anode materials. Solid State Ionics 139(1-2):145–152CrossRefGoogle Scholar
  21. 21.
    Yi JY, Choi GM (2002) Phase characterization and electrical conductivity of LaSr(GaMg)1−xMnxO3 system. Solid State Ionics 148(3-4):557–565CrossRefGoogle Scholar
  22. 22.
    Lim YT, Son JY (2013) Preparation and electric characterization of single phase La0.8Sr0.2Ga0.8Mg0.2O3 and La0.8Sr0.2Ga0.8Mg0.115Co0.085O3 thin films. Electron Mater Lett 9(2):241–243CrossRefGoogle Scholar
  23. 23.
    Zhang XF, Liu T, Yu JK, Gao X, Jin HB, Wang XN, Wang C (2017) A limiting current oxygen sensor with La0.8Sr0.2(Ga0.8Mg0.2)1-xFexO3-δ dense diffusion barrier. J Solid State Electrochem 21(5):1323–1328CrossRefGoogle Scholar
  24. 24.
    Gao X, Liu T, Zhang XF, He BG, Yu JK (2017) Properties of limiting current oxygen sensor with La0.8Sr0.2Ga0.8Mg0.2O3-δ solid electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)1-xCrxO3-δ dense diffusion barrier. Solid State Ionics 304:135–144CrossRefGoogle Scholar
  25. 25.
    Zhang XF, Liu T, Zhang HM, Yu JK, Jin HB, Wang XN, Wang C, Gao X (2018) Limiting current oxygen sensors with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)1-xCoxO3-δ dense diffusion barrier. Ionics 24(3):827–832CrossRefGoogle Scholar
  26. 26.
    Yashima M, Nomura K, Kageyama H, Miyazaki Y, Chitose N, Adachi K (2003) Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O2.8. Chem Phys Lett 380(3-4):391–396CrossRefGoogle Scholar
  27. 27.
    Yan BJ, Zhang JY, Liu JH, Liu GR (2005) Synthesis and structure of perovskite La1-xSrxCo1-yGayO3-δ (x=0.3 and 0.5, y=0.1). Mater Lett 59(26):3226–3229CrossRefGoogle Scholar
  28. 28.
    Wagner C (1975) Equations for transport in solid oxides and sulfides of transition metals. Prog Solid State Chem 10:3–16CrossRefGoogle Scholar
  29. 29.
    Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34(2):210–213CrossRefGoogle Scholar
  30. 30.
    Taub S, Neuhaus K, Wiemhӧfer HD, Ni N, Kilner JA, Atkinson A (2015) The effects of Co and Cr on the electrical conductivity of cerium gadolinium oxide. Solid State Ionics 282:54–62CrossRefGoogle Scholar
  31. 31.
    Trofimenko N, Ullmann H (1999) Transition metal doped lanthanum gallates. Solid State Ionics 118(3-4):215–227CrossRefGoogle Scholar
  32. 32.
    Khorkounov BA, Nafe H, Aldinger F (2006) Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity. J Solid State Electrochem 10(7):479–487CrossRefGoogle Scholar
  33. 33.
    Usui T, Asada A, Nakazawa M, Osanai H (1989) Gas polarographic oxygen sensor using an oxygen/zirconia electrolyte. J Electrochem Soc 136(2):534–542CrossRefGoogle Scholar
  34. 34.
    Nagao M, Kobayashi K, Yamamoto Y, Yamaguchi T, Oogushi A, Hibino T (2016) Rechargeable metal-air proton-exchange membrane batteries for renewable energy storage. ChemElectroChem 3(2):247–255CrossRefPubMedGoogle Scholar
  35. 35.
    Kobayashi K, Nagao M, Hibino T (2016) A rechargeable tin­air PEM battery using SnSO4 as an anode-active material. Chem Lett 45(2):161–163CrossRefGoogle Scholar
  36. 36.
    Islam MS (2002) Computer modelling of defects and transport in perovskite oxides. Solid State Ionics 154–155:75–85CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations