Skip to main content
Log in

Polyaniline films electrodeposited on iron from oxalic acid solution: spectroscopic analysis of chemical structure

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Chemical structure of polyaniline electrodeposited on iron from oxalic acid solution has been studied by means of NEXAFS, Raman, and XPS spectroscopies. The effect of the duration and synthesis conditions (polarization mode, potentials, stirring of the solution) has been analyzed. The as-formed PANI films have revealed a relatively low degree of protonation. It has been shown that stirring of electrolyte has the greatest effect on the chemical structure of the polymer. The deposition from the stirred solution provides smooth and chemically homogeneous films, whereas the deposition from quiescent solutions favors the precipitation of polyaniline particles enriched in pernigraniline fragments. The obtained XPS results verify the adsorption of the polymer through the N2p-Fe3d donor-acceptor interaction between iron atoms and amine groups of polyaniline chains in the film nuclei. The nitrogen K edge NEXAFS spectra, which are very sensitive to the protonation of chains and electronic delocalization, vary significantly, depending on the conditions of PANI electrodeposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23(8):1443–1484

    Article  CAS  Google Scholar 

  2. Ćirić-Marjanović G (2013) Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synth Met 170:31–56

    Article  CAS  Google Scholar 

  3. Wolfart F, Hryniewicz BM, Góes MS, Corrêa CM, Torresi R, Minadeo MAOS, Córdoba de Torresi SI, Oliveira RD, Marchesi LF, Vidotti M (2017) Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J Solid State Electrochem 21(9):2489–2515

    Article  CAS  Google Scholar 

  4. Inzelt G (2017) Recent advances in the field of conducting polymers. J Solid State Electrochem 21(7):1965–1975

    Article  CAS  Google Scholar 

  5. Faraji M (2018) Interlaced polyaniline/carbon nanotube nanocomposite co-electrodeposited on TiO2 nanotubes/Ti for high-performance supercapacitors. J Solid State Electrochem 22(3):677–684

    Article  CAS  Google Scholar 

  6. Asen P, Shahrokhian S, Zad AI (2018) Transition metal ions-doped polyaniline/grapheme oxide nanostructure as high performance electrode for supercapacitor applications. J Solid State Electrochem 22(4):983–996

    Article  CAS  Google Scholar 

  7. Talbi L, Berouaken M, Khaldi K, Keffous A, Gabouze N, Trari M, Menari H, Belkacem Y (2018) Elaboration and characterization of electrochemically prepared H+-doped polyaniline/Au/a-SiC:H-based chemical sensor. J Solid State Electrochem 22(4):1123–1130

    Article  CAS  Google Scholar 

  8. Jin D, Qin Z, Shen Y, Li T, Ding L, Chen Y, Zhang Y (2018) Enhancing the formation and capacitance properties of interfacial polymerized polyaniline nanofibers by introducing small alcohol molecules. J Solid State Electrochem 22(4):1227–1236

    Article  CAS  Google Scholar 

  9. Li P, Ni C, Shi G, Zhang D, Xu Y (2018) Fabricating composite supercapacitor electrodes of polyaniline and aniline-terminated silica by mechanical agitation and sonication. J Solid State Electrochem 22(4):1249–1256

    Article  CAS  Google Scholar 

  10. Syugaev AV, Lyalina NV, Maratkanova AN, Shakov AA (2018) Effect of sodium dodecyl sulfate and carbon particles/nanotubes on electrodeposition of polyaniline from oxalic acid solution. J Solid State Electrochem 22(3):931–942

    Article  CAS  Google Scholar 

  11. Tallman DE, Spinks G, Dominis A, Wallace GG (2002) Electroactive conducting polymers for corrosion control. Part 1. General introduction and a review of non-ferrous metals. J Solid State Electrochem 6(2):73–84

    Article  CAS  Google Scholar 

  12. Spinks G, Dominis A, Wallace GG, Tallman DE (2002) Electroactive conducting polymers for corrosion control. Part 2. Ferrous metals. J Solid State Electrochem 6(2):85–100

    Article  CAS  Google Scholar 

  13. Dung Nguyen T, Anh Nguyen T, Pham MC, Piro B, Normand B, Takenouti H (2004) Mechanism for protection of iron corrosion by an intrinsically electronic conducting polymer. J Electroanal Chem 572(2):225–234

    Article  CAS  Google Scholar 

  14. Herrasti P, Recio FJ, Ocón P, Fatás E (2005) Effect of the polymer layers and bilayers on the corrosion behaviour of mild steel: comparison with polymers containing Zn microparticles. Prog Org Coat 54(4):285–291

    Article  CAS  Google Scholar 

  15. Trivedi DC, Dhawan SK (1993) Antistatic applications of conducting polyaniline. Polym Adv Technol 4(5):335–340

    Article  CAS  Google Scholar 

  16. Ćirić-Marjanović G (2013) Recent advances in polyaniline research: polymerization mechanisms structural aspects, properties and applications. Synth Met 177:1–47

    Article  CAS  Google Scholar 

  17. Trchová M, Morávková Z, Bláha M, Stejskal J (2014) Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim Acta 122:28–38

    Article  CAS  Google Scholar 

  18. Ćirić-Marjanović G, Trchová M, Stejskal J (2008) The chemical oxidative polymerization of aniline in water: Raman spectroscopy. J Raman Spectrosc 39(10):1375–1387

    Article  CAS  Google Scholar 

  19. Сórdova R, del Valle MA, Arratia A, Gómez H, Schrebler R (1994) Effect of anions on the nucleation and growth mechanism of polyaniline. J Electroanal Chem 377(1–2):75–83

    Article  Google Scholar 

  20. Bade K, Tsakova V, Schultze JW (1992) Nucleation, growth and branching of polyaniline from microelectrode experiments. Electrochim Acta 31(12):2255–2261

    Article  Google Scholar 

  21. Zotti G, Cattarin S, Comisso N (1988) Cyclic potential sweep electropolymerization of aniline. The role of anions in the polymerization mechanism. J Electroanal Chem 239(1–2):387–396

    Article  CAS  Google Scholar 

  22. Yang H, Bard AJ (1992) The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J Electroanal Chem 339(1–2):423–449

    Article  CAS  Google Scholar 

  23. Orata D, Buttry DA (1987) Determination of ion population and solvent content as function of redox state and pH in polyaniline. J Am Chem Soc 109(12):3574–3581

    Article  CAS  Google Scholar 

  24. Horanyi G, Inzelt G (1988) Anion-involvement in electrochemical transformation of polyaniline. A radiotracker study. Electrochim Acta 33(7):947–952

    Article  CAS  Google Scholar 

  25. Duić L, Mandić Z, Kovać S (1995) Polymer-dimer distribution in the electrochemical synthesis of polyaniline. Electrochim Acta 40(11):1681–1688

    Article  Google Scholar 

  26. De Albuquerque Maranhão SL, Torresi RM (1999) Anion and solvent exchange as a function of the redox states in polyaniline films. J Electrochem Soc 146(11):4179–4182

    Article  Google Scholar 

  27. Erdem E, Saçak M, Karakişla M (1996) Synthesis and properties of oxalic acid-doped polyaniline. Polym Int 39(2):153–159

    Article  CAS  Google Scholar 

  28. Martyak NM, McAndrew P, McCaskie JE, Dijon J (2002) Electrochemical polymerization of aniline from an oxalic acid medium. Prog Org Coat 45(1):23–32

    Article  CAS  Google Scholar 

  29. Nautiyal A, Parida S (2016) Comparison of polyaniline electrodeposition on carbon steel from oxalic acid and salicylate medium. Prog Org Coat 94:28–33

    Article  CAS  Google Scholar 

  30. Özyılmaz AT, Kardaş G, Erbil M, Yazıcı B (2005) The corrosion performance of polyaniline on nickel plated mild steel. Appl Surf Sci 242(1–2):97–106

    Article  CAS  Google Scholar 

  31. Guay D, Stewart-Ornstein J, Zhang X, Hitchcock AP (2005) In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission X-ray microscopy. Anal Chem 77(11):3479–3487

    Article  CAS  PubMed  Google Scholar 

  32. Magnuson M, Guo J-H, Butorin SM, Agui A, Såthe C, Nordgren J, Monkman AP (1999) The electronic structure of polyaniline and doped phases studied by soft X-ray absorption and emission spectroscopies. J Chem Phys 111(10):4756–4761

    Article  CAS  Google Scholar 

  33. Yau S, Lee YH, Chang CZ, Fan LJ, Yang YW, Dow WP (2009) Structures of aniline and polyaniline molecules adsorbed on Au (111) electrode: as probed by in Situ STM, ex Situ XPS, and NEXAFS. J Phys Chem C 113(31):13758–13764

    Article  CAS  Google Scholar 

  34. Lee YH, Chang CZ, Yau SL, Fan LJ, Yang YW, Ou Yang LY, Itaya K (2009) Conformations of polyaniline molecules adsorbed on Au(111) probed by in Situ STM and ex Situ XPS and NEXAFS. J Am Chem Soc 131(18):6468–6474

    Article  CAS  PubMed  Google Scholar 

  35. Gorovikov SA, Follath R, Molodtsov SL, Kaindl G (2001) Optimization of the optical design of the Russian–German soft-X-ray beamline at BESSY II. Nucl Instrum Meth A 467-468(1):565–568

    Article  CAS  Google Scholar 

  36. Watts B, Thomsen L, Dastoor PC (2006) Methods in carbon K-edge NEXAFS: experiment and analysis. J Electron Spectrosc Relat Phenom 151(2):105–120

    Article  CAS  Google Scholar 

  37. Batson PE (1993) Carbon 1s near-edge-absorption fine structure in graphite. Phys Rev B 48(4):2608–2610

    Article  CAS  Google Scholar 

  38. Coffey T, Urquhart SG, Ade H (2002) Characterization of the effects of soft X-ray irradiation on polymers. J Electron Spectrosc Relat Phenom 122(1):65–78

    Article  CAS  Google Scholar 

  39. Song Y, Guo Z, Hu Z, Wang J, Jiao S (2017) Electrochemical self-assembly of nano-polyaniline film by forced convection and its capacitive performance. RSC Adv 7(7):3879–3887

    Article  CAS  Google Scholar 

  40. Colomban PH, Folch S, Gruger A (1999) Vibrational study of short-range order and structure of polyaniline bases and salts. Macromolecules 32(9):3080–3092

    Article  CAS  Google Scholar 

  41. Louran G, Lapkowski M, Quillard S, Pron A, Buisson JP, Lefrant S (1996) Vibrational properties of polyaniline—isotope effect. J Phys Chem 100(17):6998–7006

    Article  Google Scholar 

  42. Quillard S, Louarn G, Lefrant S, Macdiarmid AG (1994) Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B 50(17):12496–12508

    Article  CAS  Google Scholar 

  43. Salvatierra RV, Oliveira MM, Zarbin AJG (2010) One-pot synthesis and processing of transparent, conducting, and free standing carbon nanotubes/polyaniline composite films. Chem Mater 22(18):5222–5234

    Article  CAS  Google Scholar 

  44. Domingues SH, Salvatierra RV, Oliveira MM, Zarbin AJG (2011) Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chem Commun 47(9):2592–2594

    Article  CAS  Google Scholar 

  45. Dhez O, Ade H, Urquhart SG (2003) Calibrated NEXAFS spectra of some common polymers. J Electron Spectrosc Relat Phenom 128(1):85–96

    Article  CAS  Google Scholar 

  46. Outka DA, Stöhr J, Madix RJ, Rotermund HH, Hermsmeier B, Solomon J (1987) NEXAFS studies of complex alcohols and carboxylic acids on the Si(111)(7 × 7) surface. Surf Sci 185(1–2):53–74

    Article  CAS  Google Scholar 

  47. Wada S, Takigawa M, Matsushita K, Kizaki H, Tanaka K (2007) Adsorption and structure of methylmercaptoacetate on Cu(111) surface by XPS and NEXAFS spectroscopy. Surf Sci 601(18):3833–3837

    Article  CAS  Google Scholar 

  48. Hennig C, Hallmeier KH, Szargan R (1998) XANES investigation of chemical states of nitrogen in polyaniline. Synth Met 92(2):161–166

    Article  CAS  Google Scholar 

  49. Pavlychev AA, Hallmeier KH, Hennig C, Hennig L, Szargan R (1995) Nitrogen K-shell excitations in complex molecules and polypyrrole. Chem Phys 201(2–3):547–555

    Article  CAS  Google Scholar 

  50. Vinogradov AS, Fedoseenko SI, Krasnikov SA, Preobrajenski AB, Sivkov VN, Vyalikh DV, Molodtsov SL, Adamchuk VK, Laubschat C, Kaindl G (2005) The hybridized M3d-F2p character of low-energy unoccupied electron states in 3d metal fluorides observed by F1s absorption. Phys Scr T115:510–512

    Article  CAS  Google Scholar 

  51. Neoh KG, Kang ET, Tan KL (1991) Structural study of polyaniiine films in reprotonatlon/deprotonation cycles. J Phys Chem 95(24):10151–10156

    Article  CAS  Google Scholar 

  52. Kellenberger A, Dmitrieva E, Dunsch L (2011) The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situ ATR-FTIR spectroelectrochemical study. Phys Chem Chem Phys 13(8):3411–3420

    Article  CAS  PubMed  Google Scholar 

  53. Ding Z, Sanchez T, Labouriau A, Iyer S, Larson T, Currier R, Zhao Y, Yang D (2010) Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration. J Phys Chem B 114(32):10337–10346

    Article  CAS  PubMed  Google Scholar 

  54. Losito I, De Giglio E, Cioffi N, Malitesta C (2001) Spectroscopic investigation on polymer films obtained by oxidation of o-phenylenediamine on platinum electrodes at different pHs. J Mater Chem 11(7):1812–1817

    Article  CAS  Google Scholar 

  55. Folch S, Régis A, Gruger A, Colomban P (2000) Chain length effect on intrachain electronic excitation and interchain coupling in poly- and oligo-anilines. Synth Met 110(3):219–227

    Article  CAS  Google Scholar 

  56. Wood MH, Welbourn RJL, Charlton T, Zarbakhsh A, Casford MT, Clarke SM (2013) Hexadecylamine adsorption at the iron oxide-oil interface. Langmuir 29(45):13735–13742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Incorvia MJ, Contarini S (1989) X-ray photoelectron spectroscopic studies of metal/inhibitor systems: structure and bonding at the iron/amine interface. J Electrochem Soc 136(9):2493–2498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. K. G Mikheev (Institute of Mechanics, Udmurt Federal Research Center, Ural Branch of Russian Academy of Sciences) for measuring Raman spectra.

Funding

This work was supported by FASO of Russia within the state assignment No. АААА-А17-117022250038-7, Russian Foundation for Basic Research (No. 16-43-180228), and bilateral Program “Russian-German Laboratory at BESSY II.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Syugaev.

Electronic supplementary material

ESM 1

(PDF 1652 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syugaev, A.V., Maratkanova, A.N., Shakov, A.A. et al. Polyaniline films electrodeposited on iron from oxalic acid solution: spectroscopic analysis of chemical structure. J Solid State Electrochem 22, 3171–3182 (2018). https://doi.org/10.1007/s10008-018-4033-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4033-9

Keywords

Navigation